
z/OS
Integrated Cryptographic Service Facility

System Programmer’s Guide

SA22-7520-03

���

z/OS
Integrated Cryptographic Service Facility

System Programmer’s Guide

SA22-7520-03

���

Note!
Before using this information and the product it supports, be sure to read the general information under “Notices” on
page 185.

Note!
The information in this document is subject to change. Use the information in this document for planning purposes only. This
document contains information of a proprietary nature. ALL INFORMATION CONTAINED HEREIN SHALL BE KEPT IN
CONFIDENCE. This information should not be divulged to persons other than: IBM employees authorized by the nature of
their duties to receive such information, or individuals and organizations authorized by the IBM Corporation in accordance
with existing policy regarding release of company information.

Fourth Edition (March 2002)

This is a major revision of SA22-7520-02.

This edition applies to Version 1 Release 3 of z/OS (5694-A01) and to all subsequent releases and modifications
until otherwise indicated in new editions.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are
not stocked at the address below.

IBM welcomes your comments. A form for readers’ comments may be provided at the back of this publication, or you
may address your comments to the following address:

International Business Machines Corporation
Department 55JA, Mail Station P384
2455 South Road
Poughkeepsie, NY 12601-5400
United States of America

FAX (United States & Canada): 1+845+432-9405
FAX (Other Countries):

Your International Access Code +1+845+432-9405

IBMLink (United States customers only): IBMUSM10(MHVRCFS)
Internet e-mail: mhvrcfs@us.ibm.com
World Wide Web: http://www.ibm.com/servers/eserver/zseries/zos/webqs.html

If you would like a reply, be sure to include your name, address, telephone number, or FAX number.

Make sure to include the following in your comment or note:
v Title and order number of this book
v Page number or topic related to your comment

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1997, 2002. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

http://www.ibm.com/servers/eserver/zseries/zos/webqs.html

Contents

Figures . vii

Tables . ix

About This Book . xi
Who Should Use This Book . xi
How to Use This Book . xi
Where to Find More Information. xii

Using LookAt to look up message explanations xiv
Accessing licensed books on the Web xv

Do You Have Problems, Comments, or Suggestions? xvi

Summary of changes . xvii

Chapter 1. Introduction to z/OS ICSF 1
The Cryptographic Key Data Set (CKDS). 2
The Public Key Data Set (PKDS) 3
Additional Background Information 4

Running CUSP/PCF Applications on OS/390 ICSF 4
Running 4753-HSP Applications on ICSF. 4
Using RMF and SMF to Monitor z/OS ICSF Events 5
Controlling Access to ICSF . 5

Before Starting Installation . 5

Chapter 2. Installation, Initialization, and Customization 7
Steps in Installation and Initialization 7

Customize SYS1.PARMLIB . 8
Create the CKDS . 8
Create the PKDS . 10
Create the Installation Options Data Set 12
Create the ICSF Startup Procedure 14
Provide Access to the ICSF Panels 16

Start ICSF for the First Time . 17
MK Initialization for SMP/E Only 19
Customizing ICSF after the First Start 20

Changing Parameters in the Installation Options Data Set 20
Improving CKDS Performance 29
Creating ICSF Exits and Generic Services 29

Chapter 3. Migration from CUSP/PCF to z/OS ICSF 31
Running CUSP/PCF and z/OS ICSF on the Same System 31

Running in Compatibility Mode 32
Running in Coexistence Mode 32
Changing the Master Key in Compatibility or Coexistence Mode 33
Running in Noncompatibility Mode. 34
Specifying Compatibility Modes during Migration 34

Converting a CUSP/PCF CKDS to ICSF Format 35
How the CUSP/PCF Conversion Program Runs 35
Using the Conversion Program Override File 37
Running the Conversion Program 43

Chapter 4. Migration from Previous Releases of ICSF 49
Terminology . 49

© Copyright IBM Corp. 1997, 2002 iii

||

Common Migration Activities for z/OS ICSF, OS/390 ICSF and ICSF/MVS
Version 2 Release 1 . 50
Access to Callable Services 50
Callable Services . 51
CICS Attachment Facility . 54
CKDS . 54
Installation Options Data Set 54
Key Tokens . 55
PCI Cryptographic Accelerator 55
PKA Public Key Storage . 55
PKDS . 55
Resource Manager Interface (RMF) 56
Special Secure Mode . 57
TKE Workstation . 57

Migrating from V2 R4 ICSF . 57
Installation Exits . 57

Migrating from ICSF/MVS Version 2 Release 1 57
CKDS . 58
Installation Exits . 58

Migrating from ICSF/MVS Version 1 58
Migrating from ICSF/MVS Version 1 Release 2 59
Migrating from ICSF/MVS Version 1 Release 1 60
Converting a Version 1 Release 1 CKDS to z/OS ICSF Format 61

Migrating from 4753-HSP . 63

Chapter 5. Compatibility and Coexistence of 4753-HSP and ICSF 67
Running 4753-HSP and ICSF on the Same z/OS System 67

Chapter 6. Installation-Defined Callable Services 69
Writing a Callable Service . 69

Contents of Registers . 70
Checking the Parameters . 71
Link-Editing the Callable Service 71

Defining a Callable Service . 71
Writing a Service Stub . 72

Chapter 7. Installation Exits 75
Types of Exits . 75

Mainline Exits . 75
Exits for the Callable Services 76
The CUSP/PCF Conversion Program Exit 76
The Single-record, Read-write Exit. 76
The Cryptographic Key Data Set Entry Retrieval Exit 76
Security Exits . 77
The KGUP Exit . 77

Entry and Return Specifications. 77
Registers at Entry . 77
Registers at Return . 78

Exits Environment . 78
Mainline Exits . 79
Callable Service Exits . 79
CKDS Entry Retrieval Exit . 79
KGUP, Conversion Programs, and Single-record, Read-write Exits 79
Security Exits . 79

Exit Recovery . 79
Mainline Installation Exits . 80

iv z/OS V1R3.0 ICSF System Programmer’s Guide

||

Purpose and Use of the Exits 80
Environment of the Exits . 81
Installing the Exits. 81
Input. 82
Return Codes . 87

Callable Services Installation Exits. 87
Purpose and Use of the Exits 88
Environment of the Exits . 88
Installing the Exits. 88
Input. 91
Return Codes . 96

Cryptographic Key Data Set Entry Retrieval Installation Exit 96
Purpose and Use of the Exit 97
Environment of the Exit . 97
Installing the Exit . 97
Input. 98
Return Codes . 99

CUSP/PCF Conversion Program Installation Exit 99
Purpose and Use of the Exit 99
Environment of the Exit . 99
Installing the Exit. 100
Input . 100
Return Codes . 101

Single-record, Read-write Installation Exit. 102
Purpose and Use of the Exit 102
Environment of the Exit . 103
Installing the Exit. 103
Input . 103
Return Codes . 105

Exit Points for Security Installation Exits 105
Security Installation Exits. 105

Purpose and Use of the Exits 105
Environment of the Exits . 106
Installing the Exits . 106
Input . 108
Return Codes . 108

Key Generator Utility Program Installation Exit 109
Purpose and Use of the Exit 109
Environment of the Exit . 110
Installing the Exit . 110
Input . 111
The SET Statement. 119
Return Codes . 119

Chapter 8. Operating ICSF 121
Starting and Stopping ICSF . 122
Modifying ICSF . 122
Using Different Configurations 123

Configuring the S/390 Enterprise Servers, the S/390 Multiprise Server and
the IBM Eserver zSeries 123

Disabling the Cryptographic Coprocessor Feature 125
Performance Considerations for Using Installation Options 126
VTAM Session-Level Encryption 126
Access Method Services Cryptographic Option. 126

Event Recording . 127
System Management Facilities (SMF) Recording 127

Contents v

Message Recording . 132
Security Considerations . 133

Controlling the Program Environment 133
Controlling Access to KGUP 133
Controlling Access to the Callable Services 133
Controlling Access to Cryptographic Keys 134
Scheduling Changes for Cryptographic Keys 134
Controlling Access to Administrative Panel Functions 134

Debugging Aids . 135
Component Trace . 135
ICSF System SVC 143 . 136
Abnormal Endings . 137
IPCS Formatting Routine. 137

Appendix A. Diagnosis Reference Information 139
Cryptographic Key Data Set (CKDS) Format 139

Format of the CKDS Header Record 139
Format of the CKDS Record 140
Format of the DES Internal Key Token 141

Public Key Data Set (PKDS) Format 142
Format of the PKDS Header Record 143
Format of the PKDS Record 143
PKA Token Formats . 143
Internal PKA Tokens . 150

Data Areas . 157
The Cryptographic Communication Vector Table (CCVT) 157
The Cryptographic Communication Vector Table Extension (CCVE) 162

Appendix B. Installing the CICS-ICSF Attachment Facility 171

Appendix C. Helpful Hints for ICSF First Time Startup. 177
Checklist for First-Time Startup of ICSF 177

Step 1. Hardware Setup . 177
Step 2. LPAR Activation Profiles 177
Step 3. ICSF Setup . 178
Step 4. TKE Setup . 178
Step 5. ICSF Startup . 179
Step 6. Loading Master Keys and Initializing the CKDS through ICSF Panels 179
Step 7. Customizing TKE and Loading Master Keys 180
Step 8. CICS-ICSF Attachment Facility Setup 181

Normal ICSF Messages at First Time Startup 181
Commonly Encountered ICSF First Time Setup/initialization Messages 181

Appendix D. Accessibility . 183
Using assistive technologies 183
Keyboard navigation of the user interface. 183

Notices . 185
Programming Interface Information 186
Trademarks. 186

Index . 189

vi z/OS V1R3.0 ICSF System Programmer’s Guide

Figures

1. The z/OS ICSF Library . xiv
2. Example of a Conversion Initial Activity Report . 45
3. Example of a Conversion Update Activity Report 47
4. Example of a Version 1 Release 1 to ICSF z/OS Conversion Activity Report 63
5. Example of a Service Entry and Exit . 70
6. Example of a Service Stub . 73
7. EXPB Control Block for Mainline Exits . 82
8. EXPB Control Block in the Callable Service Exits 92
9. Two Crypto CPs on a Processor Complex Running in Single Image Mode 123

10. Three Crypto CPs on a Processor Complex Running in LPAR Mode 125

© Copyright IBM Corp. 1997, 2002 vii

viii z/OS V1R3.0 ICSF System Programmer’s Guide

Tables

1. Exit Identifiers and Exit Invocations . 23
2. Format of Records in the Override File . 38
3. EXPB Control Block Format for Mainline Exits . 82
4. CSFEXIT1 Parameters . 83
5. CSFEXIT2 and CSFEXIT3 Parameters. 84
6. CSFEXIT4 and CSFEXIT5 Parameters. 84
7. Format of the Exit Name Table. 85
8. Callable Services and Their ICSF Names . 89
9. Compatibility Services and Their ICSF Names . 91

10. EXPB Control Block Format for Callable Services 92
11. SPB Control Block Format . 94
12. The CKDS Entry Retrieval Exit Parameters . 98
13. CVXP Control Block Format . 100
14. RWXP Control Block Format . 104
15. Parameters Received by the Security Service Exit 108
16. Parameters Received by the Security Key Exit 108
17. KGXP Control Block Format . 111
18. IPCS Symbols and Format References for the ICSF Control Blocks 137
19. Cryptographic Key Data Set Header Record Format 139
20. Cryptographic Key Data Set Record Format . 140
21. Internal Key Token Format . 141
22. Public Key Data Set Header Record Format . 143
23. Public Key Data Set Record Format . 143
24. RSA Public Key Token . 144
25. DSS Public Key Token . 145
26. RSA Private External Key Token Basic Record Format 146
27. RSA Private Key Token, 1024-bit Modulus-Exponent External Format 147
28. RSA Private Key Token, 2048-bit Chinese Remainder Theorem External Format 147
29. DSS Private External Key Token . 149
30. RSA Private Internal Key Token Basic Record Format 151
31. RSA Private Internal Key Token, 1024-bit ME Form for Cryptographic Coprocessor Feature 152
32. RSA Private Internal Key Token, 1024-bit ME Form for PCI Cryptographic Coprocessor 153
33. RSA Private Internal Key Token, 2048-bit Chinese Remainder Theorem External Format 154
34. DSS Private Internal Key Token . 156
35. Cryptographic Communication Vector Table . 158
36. Cryptographic Communication Vector Table Extension. 163
37. Master Key Verification Pattern Block Format . 167
38. Generic Service Table Block Format . 167
39. RMF Measurements Record Format . 168

© Copyright IBM Corp. 1997, 2002 ix

||

x z/OS V1R3.0 ICSF System Programmer’s Guide

About This Book

This book describes how to initialize, customize, operate, and diagnose the z/OS
Integrated Cryptographic Service Facility (ICSF). The z/OS Cryptographic Services
includes the following components:

v z/OS Integrated Cryptographic Service Facility (ICSF)

v z/OS Open Cryptographic Services Facility (OCSF)

ICSF is a software element of z/OS that works with the hardware cryptographic
feature and the Security Server (RACF) to provide secure, high-speed cryptographic
services. ICSF provides the application programming interfaces by which
applications request the cryptographic services.

Who Should Use This Book
This book is intended for the system programmer. It describes the following tasks
that a system programmer might perform:

v Programming installation options, installation-defined callable services, and
installation exits

v Creating the data sets that ICSF uses

v Migrating the system from the Cryptographic Unit Support Program (CUSP) and
Programmed Cryptographic Facility (PCF) to ICSF

v Migrating to z/OS ICSF

v Migrating from the IBM Network Security Processor Support Program (hereafter
called 4753-HSP) to ICSF

v Starting and stopping ICSF

v Checking event recording

v Planning for security and performance considerations

v Debugging and recovering from problems

Defining and writing installation-defined callable services and installation exit
routines is intended to be accomplished primarily by experienced system
programmers. This information assumes that the reader has an advanced
knowledge of z/OS.

How to Use This Book
The information in this book is divided into descriptions of the following tasks:

v Introducing ICSF

– Chapter 1, “Introduction to z/OS ICSF” on page 1, introduces the
cryptographic key data set (CKDS) and provides basic information about
running CUSP/PCF and 4753-HSP applications on ICSF and preparing for
installation.

v Initializing ICSF

– Chapter 2, “Installation, Initialization, and Customization” on page 7, describes
how to customize SYS1.PARMLIB, create the CKDS, the PKDS, the
installations options data set, the startup procedure, and provide access to the
ICSF panels. It also explains how to setup for SMP/E electronic delivery,
change the parameters in the installation options data set after the first start
and introduces installation exits.

© Copyright IBM Corp. 1997, 2002 xi

|
|
|
|
|
|

– Chapter 3, “Migration from CUSP/PCF to z/OS ICSF” on page 31, describes
how to migrate application programs and cryptographic key data set
information to z/OS ICSF from the IBM cryptographic products CUSP/PCF.

– Chapter 4, “Migration from Previous Releases of ICSF” on page 49, describes
migration to z/OS ICSF from previous releases of ICSF.

– Chapter 5, “Compatibility and Coexistence of 4753-HSP and ICSF” on
page 67, gives a brief overview of migrating 4753-HSP key storage to ICSF
CKDS.

v Customizing ICSF

– Chapter 6, “Installation-Defined Callable Services” on page 69 gives
information that an experienced system programmer can use to write
installation-defined callable services. It also explains how to define these
callable services to ICSF, and how to write service stubs to access them.

– Chapter 7, “Installation Exits” on page 75, describes the ICSF installation exits
you can use to customize ICSF.

v Operating ICSF

– Chapter 8, “Operating ICSF” on page 121, describes how to start, modify, and
stop ICSF and other operating considerations.

– “Event Recording” on page 127, describes ICSF event recording on the
Security Console and SMF.

v Planning ICSF

– “Security Considerations” on page 133, describes methods you can use to
protect ICSF resources.

v Diagnosing ICSF

– “Debugging Aids” on page 135, describes the use of component trace and
Interactive Problem Control System (IPCS) to debug ICSF.

– Appendix A, “Diagnosis Reference Information” on page 139, maps the
cryptographic key data set and the cryptographic communication vector tables
as reference information for use in debugging. This appendix also maps DES
and PKA key tokens.

– Appendix B, “Installing the CICS-ICSF Attachment Facility” on page 171,
defines steps to install the CICS-ICSF Attachment Facility.

– Appendix C, “Helpful Hints for ICSF First Time Startup” on page 177, defines
helpful hints and that you may encounter when starting ICSF for the first time.

– “Notices” on page 185 contains information on notices, programming interface
information and trademarks.

Where to Find More Information
For more information about other ICSF books, see Figure 1 on page xiv.

This book also refers to the following publications:

v IBM ES/3090 Processor Complex Recovery Guide, SC38-0070

v z/OS and z/OS.e Planning for Installation, GA22-7504

v z/OS MVS IPCS User’s Guide, SA22-7596

v z/OS MVS System Codes, SA22-7626

v z/OS MVS System Management Facilities (SMF), SA22-7630

v z/OS MVS Programming: Extended Addressability Guide, SA22-7614

v z/OS MVS Initialization and Tuning Guide, SA22-7591

v z/OS MVS Initialization and Tuning Reference, SA22-7592

xii z/OS V1R3.0 ICSF System Programmer’s Guide

v MVS Batch Local Shared Resources, GC28-1469

v MVS/ESA VSAM Administration Guide, SC26-4518

v MVS/DFP Managing VSAM Data Sets, SC26-4568

v IBM Transaction Security System: General Information Manual and Planning
Guide, GA34-2137

v IBM Transaction Security System: Concepts and Programming Guide: Volume I,
Access Controls and DES Cryptography, GC31-3937

v IBM Transaction Security System: Basic CCA Cryptographic Services,
SA34-2362

v IBM Transaction Security System: Concepts and Programming Guide: Volume II,
Public-Key Cryptography, GC31-2889

v IBM Distributed Key Management System, Installation and Customization Guide,
GG24-4406

v OS/VS1 and OS/VS2 MVS Cryptographic Unit Support: Installation Manual,
SC28-1016

v OS/VS1 and OS/VS2 MVS Programmed Cryptographic Facility, SC28-0956

v CICS Customization Guide, SC34-5706

v CICS Resource Definition Guide, SC34-5722

About This Book xiii

Using LookAt to look up message explanations
LookAt is an online facility that allows you to look up explanations for z/OS
messages, system abends, and some codes. Using LookAt to find information is
faster than a conventional search because in most cases LookAt goes directly to
the message explanation.

You can access LookAt from the Internet at:
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/lookat.html

Figure 1. The z/OS ICSF Library

xiv z/OS V1R3.0 ICSF System Programmer’s Guide

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/lookat.html

or from anywhere in z/OS where you can access a TSO command line (for
example, TSO prompt, ISPF, z/OS UNIX System Services running OMVS).

To find a message explanation on the Internet, go to the LookAt Web site and
simply enter the message identifier (for example, IAT1836 or IAT*). You can select a
specific release to narrow your search. You can also download code from the z/OS
Collection, SK3T-4269 and the LookAt Web site so you can access LookAt from a
PalmPilot (Palm VIIx suggested).

To use LookAt as a TSO command, you must have LookAt installed on your host
system. You can obtain the LookAt code for TSO from a disk on your z/OS
Collection, SK3T-4269 or from the LookAt Web site. To obtain the code from the
LookAt Web site, do the following:

1. Go to http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/lookat.html.

2. Click the News button.

3. Scroll to Download LookAt Code for TSO and VM.

4. Click the ftp link, which will take you to a list of operating systems. Select the
appropriate operating system. Then select the appropriate release.

5. Find the lookat.me file and follow its detailed instructions.

To find a message explanation from a TSO command line, simply enter: lookat
message-id. LookAt will display the message explanation for the message
requested.

Note: Some messages have information in more than one book. For example,
IEC192I has routing and descriptor codes listed in z/OS MVS Routing and
Descriptor Codes. For such messages, LookAt prompts you to choose which
book to open.

Accessing licensed books on the Web
z/OS licensed documentation in PDF format is available on the Internet at the IBM
Resource Link Web site at:
http://www.ibm.com/servers/resourcelink

Licensed books are available only to customers with a z/OS license. Access to
these books requires an IBM Resource Link Web userid and password, and a key
code. With your z/OS order you received a memo that includes this key code.

To obtain your IBM Resource Link Web userid and password log on to:
http://www.ibm.com/servers/resourcelink

To register for access to the z/OS licensed books:

1. Log on to Resource Link using your Resource Link userid and password.

2. Click on User Profiles located on the left-hand navigation bar.

3. Click on Access Profile.

4. Click on Request Access to Licensed books.

5. Supply your key code where requested and click on the Submit button.

If you supplied the correct key code you will receive confirmation that your request
is being processed. After your request is processed you will receive an e-mail
confirmation.

About This Book xv

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/lookat.html
http://www.ibm.com/servers/resourcelink
http://www.ibm.com/servers/resourcelink

Note: You cannot access the z/OS licensed books unless you have registered for
access to them and received an e-mail confirmation informing you that your
request has been processed.

To access the licensed books:

1. Log on to Resource Link using your Resource Link userid and password.

2. Click on Library.

3. Click on zSeries.

4. Click on Software.

5. Click on z/OS.

6. Access the licensed book by selecting the appropriate element.

Do You Have Problems, Comments, or Suggestions?
Your suggestions and ideas can contribute to the quality and the usability of this
book. If you have problems using this book, or if you have suggestions for
improving it, complete and mail the Reader’s Comment Form found at the back of
the book.

xvi z/OS V1R3.0 ICSF System Programmer’s Guide

Summary of changes

Summary of changes
for SA22-7520-03
z/OS Version 1 Release 3

This book contains information previously presented in z/OS ICSF System
Programmer’s Guide, SA22-7520-02, which supports z/OS Version 1 Release 2.

New information

v Access Control Points

– UKPT - PIN Verify, PIN Translate

v Callable services - The following new callable services perform encryption using
the AES algorithm. AES encryption is only allowed if the CCC is enabled for triple
DES. Only clear key support is provided.

– Symmetric Key Decipher (CSNBSYD) - Deciphers data in an address space
or a data space using the cipher block chaining or electronic code book
modes.

– Symmetric Key Encipher (CSNBSYE) - Enciphers data in an address space or
a data space using the cipher block chaining or electronic code book modes.

v ICSF Setup

– ICSF setup for E-Delivery delivery has been added. A sample ICSF options
dataset, CSFPRM01, has been added to SYS1.SAMPLIB for the purpose of
setting master keys by means of batch processing.

– A sample CKDS allocation job (member CSFCKDS) has been added to
SYS1.SAMPLIB.

– A sample PKDS allocation job (member CSFPKDS) has been added to
SYS1.SAMPLIB.

– Samples for CSFSTART (ICSF Startup Procedures) has been added.

– Sample JCL (CSFSETMK) for E-Delivery default passphrase has been added.

v Support to enable RMF to provide performance measurements on selected ICSF
services and functions that use Direct Access Crypto (DAC) CCF instructions has
been added.

v An appendix with z/OS product accessibility information has been added.

Changed information

v Callable services

– Control Vector Generate (CSNBCVG) - rule_array enhanced to support the
UKPT keyword.

– Key Token Build (CSNBKTB) - rule_array enhanced to support the UKPT
keyword.

– Encrypted PIN Translate (CSNBPTR) - rule_array enhanced to support UKPT
keywords UKPTIPIN, UKPTOPIN, and UKPTBOTH.

– Encrypted PIN Verify (CSNBPVR) - rule_array enhanced to support UKPT
keyword UKPTIPIN.

– Symmetric Key Export (CSNDSYX) - a new rule_array keyword, PKCSOAEP,
has been added. This keyword specifies the method found in RSA PKCS
#1V2 OAEP.

© Copyright IBM Corp. 1997, 2002 xvii

– Symmetric Key Generate (CSNDSYG) - a new rule_array keyword,
PKCSOAEP, has been added. This keyword specifies the method found in
RSA PKCS #1V2 OAEP.

– Symmetric Key Import (CSNDSYI) - a new rule_array keyword, PKCSOAEP,
has been added. This keyword specifies the method found in RSA PKCS
#1V2 OAEP.

v The ICSF TSO panels have been updated to enhance usability:

– Coprocessor management functions have been combined onto one panel

– Master key management/CKDS functions combined onto one panel

– TKE TSO utilities combined onto one panel

– Primary panel simplified

– New utility added to generate master key values from a pass phrase

This book contains terminology, maintenance, and editorial changes. Technical
changes or additions to the text and illustrations are indicated by a vertical line to
the left of the change.

Starting with z/OS V1R2, you may notice changes in the style and structure of
some content in this book—for example, headings that use uppercase for the first
letter of initial words only, and procedures that have a different look and format. The
changes are ongoing improvements to the consistency and retrievability of
information in our books.

Summary of changes
for SA22-7520-02
as Updated December 2001

This book contains information previously presented in z/OS ICSF System
Programmer’s Guide, SA22-7520-01, which supports z/OS Version 1 Release 2.

Changed information

v Updated “Customize SYS1.PARMLIB” on page 8.

v Updated “Provide Access to the ICSF Panels” on page 16.

This book contains terminology, maintenance, and editorial changes, including
changes to improve consistency and retrievability.

Summary of changes
for SA22-7520-01
z/OS Version 1 Release 2

This book contains information previously presented in z/OS ICSF System
Programmer’s Guide, SA22-7520-00, which supports z/OS Version 1 Release 1.

New information

v Callable services

– PKA Key Token Change (CSNDKTC) callable service - This service changes
PKA internal key tokens (RSA and DSS) from encipherment with the old PCI
Cryptographic Coprocessor asymmetric-keys master key to encipherment with
the current PCI Cryptographic Coprocessor asymmetric-keys master key.

– Secure Messaging for Keys (CSNBSKY) callable service - This service
encrypts a text block, including a clear key value decrypted from an internal or
external DES token.

xviii z/OS V1R3.0 ICSF System Programmer’s Guide

– Secure Messaging for PINs (CSNBSPN) callable service - This service
encrypts a text block, including a clear PIN block recovered from an encrypted
PIN block.

v Installation Options Data Set

– PKDSCACHE, an installation option, defines the size of the PKDS Cache in
records. The PKDS cache improves performance as it facilitates access to
frequently used records. Specify n as a decimal value from 0 to 256. If n is
zero, no cache will be implemented. If PKDSCACHE is not specified, the
default value is 64. PKDSCACHE can be implemented on OS/390 V2 R10
and z/OS V1 R1 by installing APAR OW48568.

– When specifying parameter values within parentheses, leading and trailing
blanks are ignored. Embedded blanks may cause unpredictable results.

v PCI Cryptographic Accelerator (PCICA) support has been added. If a PCI
Cryptographic Accelerator is available, clear RSA key processing in the
CSFDPKD service will be routed to the PCI Cryptographic Accelerator. If you
have a PCI Cryptographic Accelerator online, toleration APAR OW49402 is
required on lower levels of ICSF (OS/390 V2 R9, OS/390 V2 R10 and z/OS V1
R1).

v Support to REENCIPHER PKDS and ACTIVATE PKDS has been added to the
Master Key Management Panels. The new utility, CSFPUTIL, can also be used to
reencipher the PKDS from the old asymmetric-keys master key to the current
master key and to activate the reenciphered PKDS. Toleration APAR OW49386 is
required on the following systems in order to activate the re-enciphered PKDS:

– HCRP210 (standalone), HCRP220(OS/390 V2 R6, OS/390 V2 R7, OS/390 V2
R8), HCRP230 (OS/390 V2 R9), and HCR7703 (OS/390 V2 R10 and z/OS V1
R1)

v UDX support - Support for writing your own UDX has been added.

Changed information

v Beginning in z/OS V1 R2, the DOMAIN parameter is an optional parameter in the
installation options data set. It is, however, required if more than one domain is
specified as the usage domain on the PR/SM panels or if running in native mode.
If specified in the options data set, it will be used and it must be one of the
usage domains for the LPAR. If DOMAIN is not specified in the options data set,
ICSF determines which domains are available in this LPAR. If only one domain is
defined for the LPAR, ICSF will use it. If more than one is available, ICSF will
issue error message ″CSFM409E MULTIPLE DOMAINS AVAILABLE. SELECT
ONE IN THE OPTIONS DATA SET.″

v Callable services

– MAXLEN parameter checking has been eliminated for the following services:

- Encipher (CSNBENC and CSNBENC1)

- Decipher (CSNBDEC and CSNBDEC1)

- MAC generate (CSNBMGN and CSNBMGN1)

- MAC verify (CSNBMVR and CSNBMVR1)

- Ciphertext translate (CSNBCTT and CSNBCTT1)

- MDC generate (CSNBMDG and CSNBMDG1)

The MAXLEN parameter is also no longer enforced in the CUSP compatibility
CIPHER service. The MAXLEN parameter may still be specified in the options
data set, but only the maximum value limit will be enforced (2147483647). If a
value greater than this is specified, an error will result and ICSF will not start.

Summary of changes xix

v Pass Phrase Initialization now allows uninitialized PCI Cryptographic
Coprocessors to be initialized without processing all Cryptographic Coprocessors.
A new panel option (Initialize new PCICC Only) has been added to the Pass
Phrase Initialization panel to allow the initialization of the new PCI Cryptographic
Coprocessors.

Deleted information

v Message IEC161I has been eliminated during the first time startup of ICSF.

v The following reason codes for ICSF/MVS X'18F' are being eliminated and will be
replaced with operator messages.

– Reason Code X'3C' - replaced by message CSFM105E

– Reason Code X'48' - replaced by message CSFM120E

– Reason Code X'1B' - replaced by message CSFM410E

– Reason Code X'4B' - replaced by message CSFM107E

– Reason Code X'106' - If the CCC is all zeroes, abend X'18F' reason code 4A
will occur. If the CCC does not exist, message CSFM113E will be displayed.

This book contains terminology, maintenance, and editorial changes, including
changes to improve consistency and retrievability.

xx z/OS V1R3.0 ICSF System Programmer’s Guide

Chapter 1. Introduction to z/OS ICSF

ICSF is a software element of z/OS. ICSF works with the hardware cryptographic
feature and the Security Server (RACF element) to provide secure, high-speed
cryptographic services in the z/OS environment. ICSF provides the application
programming interfaces by which applications request the cryptographic services.
The cryptographic feature is secure, high-speed hardware that performs the actual
cryptographic functions. Your processor hardware determines the cryptographic
feature available to your applications.

The Cryptographic Coprocessor Feature includes one or two cryptographic
coprocessor chips protected by tamper-detection circuitry and a cryptographic
battery unit.

The Cryptographic Coprocessor Feature is available on the following servers:

v IBM S/390 Multiprise with feature code 800 plus one of the following feature
codes (0801, 0802, 0803, 0804, 0805)

v IBM S/390 Parallel Enterprise Server - Generation 5, or IBM S/390 Parallel
Enterprise Server - Generation 6 with feature code 0800 plus one of the following
feature codes (0811, 0812, 0813, 0814, 0815, 0832, 0833, 0834, 0835)

v IBM Eserver zSeries 900 with feature code 800 plus one of the following
feature codes (0874 or 0875)

The PCI Cryptographic Coprocessor is a 4758 model 2 standard PCI-bus card
package available on the the following servers:

v S/390 G5 Enterprise Server or S/390 G6 Enterprise Server with feature codes
0864 or 0865 Feature code 0860 is needed for each PCI Cryptographic
Coprocessor

v IBM Eserver zSeries 900 with feature codes 0861 and 0865

The PCI Cryptographic Accelerator (feature code 0862) is available on the following
server and can support any combination of PCI Cryptographic Coprocessors or PCI
Cryptographic Accelerators, but the total must not exceed 16.

v IBM Eserver zSeries 900

Resource Access Control Facility (RACF), an element of the z/OS Security Server
can be used to control access to cryptographic keys and functions.

ICSF protects data from unauthorized disclosure or modification. It protects data
that is stored within a system, stored in a file on magnetic tape off a system, and
sent between systems. It can also be used to authenticate identities of senders and
receivers and to ensure the integrity of messages transmitted over a network. It
uses cryptography to accomplish these functions.

Cryptography enciphers data, using an algorithm and a cryptographic key, so the
data is in an unintelligible form. Deciphering data involves reproducing the
intelligible data from the unintelligible data. To encipher and decipher data, ICSF
uses either the U.S. National Institute of Science and Technology Data Encryption
Standard (DES) algorithm, or the Commercial Data Masking Facility (CDMF).

The CDMF defines a scrambling technique for data confidentiality. The CDMF is
intended to be a substitute for DES for those customers who have been previously
prohibited from receiving IBM products that support DES data confidentiality

© Copyright IBM Corp. 1997, 2002 1

services. The CDMF data confidentiality algorithm involves two processes: a key
shortening process and a standard DES decryption and encryption process. A
CDMF system uses an effectively shortened data key in the standard DES
algorithm to encrypt and decrypt data. DES and CDMF are symmetric key
algorithms, requiring the exchange of a secret key.

ICSF also supports several Public Key Algorithms (PKA), which do not require
exchanging a secret key. You can use these algorithms to exchange DES or CDMF
secret keys securely and to compute digital signatures for authenticating messages
and users. For digital signatures, you use a pair of keys: a private (secret) key to
sign a message and a corresponding public key to verify the signature. ICSF
supports the RSA and DSS algorithms. (Refer to the Federal Information
Processing Standard (FIPS) Publication 186 for DSS standards.)

A key can be any combination of hexadecimal characters. A key determines how
ICSF uses the algorithm to uniquely encipher data.

You can call an ICSF callable service from an application program to perform a
cryptographic function. ICSF uses keys in cryptographic functions to:
v Protect data
v Protect other keys
v Verify that messages were not altered between sender and receiver
v Generate, protect, and verify personal identification numbers (PINs)
v Distribute DES and CDMF keys
v Generate and verify digital signatures

You use ICSF callable services and programs to generate, maintain, and manage
keys that are used in the cryptographic functions. A unique key performs each type
of cryptographic function on ICSF. All DES keys, except the DES master key, are
enciphered under another key. The DES master key, which is physically secure,
enciphers each DES key that is used on the system. The symmetric-keys master
key (SYM-MK) is a double-length key that is used only to encrypt other DES keys
on the PCI Cryptographic Coprocessor. The SYM-MK must be the same as the
DES master key on the Cryptographic Coprocessor Feature.

PKA master keys protect PKA private keys. There are two PKA master keys on the
Cryptographic Coprocessor Feature. One PKA master key, the signature master key
(SMK), protects private keys that are intended for creating digital signatures. The
other PKA master key, the key management master key (KMMK), protects private
keys that are used in DES key distribution. Private keys that are protected by the
KMMK can also be used to generate digital signatures. The asymmetric-keys
master key (ASYM-MK) on the PCI Cryptographic Coprocessor is a triple-length key
used to encipher and decipher PKA keys. In order for the PCI Cryptographic
Coprocessor to function, the hash pattern of the ASYM-MK must have the same
value as the hash pattern of the SMK on the Cryptographic Coprocessor Feature. If
the PCI Cryptographic Coprocessor master key values are different, then the PCI
Cryptographic Coprocessor will not be made active.

The Cryptographic Key Data Set (CKDS)
Keys that are protected under the DES master key are stored in a VSAM data set
that is called the cryptographic key data set (CKDS). ICSF provides a sample
CKDS allocation job (member CSFCKDS) in SYS1.SAMPLIB. The CKDS contains
individual entries for each key that is added to it. You can store all types of keys
(except master keys and PKA keys) in the CKDS. Each record in the data set

2 z/OS V1R3.0 ICSF System Programmer’s Guide

|
|
|
|
|

contains the key value encrypted under the master key and other information about
the key. ICSF maintains two copies of the CKDS: a disk copy and an in-storage
copy.

Note: When a CKDS record is written which contains a key token with a control
vector that is not supported by the Cryptographic Coprocessor Feature, a
key type of CV will be placed into the CKDS record. During CKDS
reencipher processing, for any key containing a control vector which is not
supported by the Cryptographic Coprocessor Feature, a key token change
request will be sent to the PCI Cryptographic Coprocessor to reencipher the
key. In a sysplex with a shared CKDS, the CKDS reencipher process must
be invoked on a system which has a PCI Cryptographic Coprocessor
installed.

Callable services use the in-storage copy of the CKDS to perform CKDS functions.
For information on managing and sharing the CKDS in a sysplex environment, see
z/OS ICSF Administrator’s Guide, SA22-7521. The key generator utility program
(KGUP) updates the disk copy rather than the in-storage copy. Therefore,
cryptographic functions do not have to stop while KGUP updates the CKDS. The
ICSF administrator can use the ICSF panels or a utility program to refresh the
in-storage CKDS with the updated disk copy of the CKDS. Applications can also
use the dynamic CKDS update callable services to update both the in-storage and
DASD copies of the CKDS with no interruption of cryptographic function.

To add operational keys to the CKDS, for S/390 Enterprise Servers, the S/390
Multiprise, and the IBM Eserver zSeries, you can do the following:
v Use KGUP to generate or enter keys
v Use the dynamic CKDS update callable services to create and write keys directly

to the CKDS

For S/390 Enterprise Servers, the S/390 Multiprise, and the IBM Eserver zSeries,
you can use the Trusted Key Entry (TKE) workstation to load operational PIN and
TRANSPORT keys. (TKE is not part of the base product. It is an optional feature.)

The Public Key Data Set (PKDS)
RSA and DSS public and private keys can be stored in a VSAM data set that is
called the public key data set (PKDS). ICSF maintains the PKDS as an external
data set. ICSF provides a sample PKDS allocation job (member CSFPKDS) in
SYS1.SAMPLIB. In addition, ICSF optionally maintains a cache of frequently used
PKDS records. The size of the PKDS cache is set in the installation options data
set (PKDSCACHE). It is an optional feature, with a default of 64 records. If a cache
is being maintained, care must be taken when deleting or changing an existing
PKDS record. PKDSCACHE can be implemented on OS/390 V2R10 and z/OS V1
R1 by installing APAR OW48568.

You can store public key tokens or both external and internal private key tokens.
Applications can use the dynamic PKDS update callable services to create, write,
read, and delete PKDS records.

The PKDS is required for OS/390 V2 R9 ICSF and above.

Beginning in z/OS V1 R2, support to REENCIPHER PKDS and ACTIVATE PKDS
has been added to the Master Key Management Panels and to the CSFPUTIL utility
to reencipher the PKDS from the old ASYM-MK to the current master key and to
activate the reenciphered PKDS. CSFPUTIL is a utility that performs the same

Chapter 1. Introduction to z/OS ICSF 3

|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|

functions as REENCIPHER PKDS and ACTIVATE PKDS. Other systems with lower
levels of ICSF which are sharing the PKDS would disable PKDS read and PKDS
write, change the appropriate PKA master key(s),activate the reenciphered PKDS
and enable PKDS Read and PKDS Write. For information on managing and sharing
the PKDS in a sysplex environment, see z/OS ICSF Administrator’s Guide,
SA22-7521. Toleration APAR OW49386 is required on the following systems in
order to activate the re-enciphered PKDS:

v HCRP210 (standalone), HCRP220(OS/390 V2 R6, OS/390 V2 R7, OS/390 V2
R8), HCRP230 (OS/390 V2 R9), and HCR7703 (OS/390 V2 R10 and z/OS V1
R1)

Additional Background Information
The following sections provide some additional background information about using
ICSF with other products, such as the Cryptographic Unit Support Program (CUSP)
or Programmed Cryptographic Facility (PCF).

Running CUSP/PCF Applications on OS/390 ICSF
If your installation uses CUSP/PCF, you can run CUSP/PCF applications on ICSF.
You can use an installation option to specify whether a CUSP/PCF application runs
on ICSF. If you are migrating from CUSP/PCF, ICSF provides a conversion program
that converts a CUSP/PCF CKDS to ICSF format.

You can use your own installation services and exits to customize ICSF. You can
write, define, and call your own installation-defined callable service. You can also
write and define exits that ICSF calls during the processing of the following:
v ICSF mainline
v A callable service
v The CUSP/PCF conversion program
v The key generator utility program
v CKDS access

For example, each callable service in ICSF calls an exit before and after
processing. Such an exit can alter return codes in a service.

Running 4753-HSP Applications on ICSF
If your installation uses the IBM Network Security Processor Support Program
products, you may be able to run 4753-HSP applications on ICSF without change.
There are some restrictions when running both ICSF and 4753-HSP in the same
z/OS (MVS) environment:

v Although both ICSF and 4753-HSP can run CUSP/PCF compatibility mode, only
one system can provide this service at any time.

v Because both ICSF and 4753-HSP support the Common Cryptographic
Architecture (CCA) Application Programming Interface, applications need to be
linked with the callable service stubs that each product provides to access the
intended service.

v Internal key tokens are not interchangeable between the two products.

For more information on running ICSF and 4753-HSP in the same operating system
environment, refer to “Running 4753-HSP and ICSF on the Same z/OS System” on
page 67.

4 z/OS V1R3.0 ICSF System Programmer’s Guide

|
|
|
|
|
|
|

|
|
|

Using RMF and SMF to Monitor z/OS ICSF Events
You can run ICSF in different configurations and use installation options to affect
ICSF performance. While ICSF is running, you can use the Resource Management
Facilities (RMF) and System Management Facilities (SMF) to monitor certain
events. For example, ICSF records information in the ICSF SMF data set when
ICSF status changes in a processor or when you enter or change the master key.
ICSF also sends information and diagnostic messages to data sets and consoles.

With the availability of cryptographic hardware (PCI Cryptographic Coprocessor and
PCI Cryptographic Accelerator) on an LPAR basis, RMF provides performance
monitoring in the Postprocessor Crypto Hardware Activity report. This report is
based on SMF record type 70, subtype 2. The Monitor I gathering options on the
REPORTS control statement are CRYPTO and NOCRYPTO. Specify CRYPTO to
measure cryptographic hardware activity and NOCRYPTO to supress the gathering.
In addition, overview criteria is shown for the Postprocessor in the Postprocessor
Workload Activity Report - Goal Mode (WLMGL) report. Refer to z/OS RMF
Programmer’s Guide, SC33-7994, z/OS RMF User’s Guide, SC33-7990, and z/OS
RMF Report Analysis, SC33-7991 for additional information.

ICSF also supports enabling RMF to provide performance measurements on ICSF
services (Encipher, Decipher, MAC Generate, MAC Verify, One Way Hash, PIN
Translate, and PIN Verify) and functions that use Direct Access Crypto (DAC) CCF
instructions.

For diagnosis monitoring, use Interactive Problem Control System (IPCS) to access
the trace buffer and to format control blocks.

Controlling Access to ICSF
For security, you should control access to ICSF resources and services. Use a
security product like the Security Server (RACF) to protect cryptographic programs,
keys, and services. You should also change the value of the DES master key
periodically. With PKDS reencipher, you can also change the PKA Master Key
periodically.

Before Starting Installation
You use either ServerPac or CBPDO to install ICSF as part of the z/OS installation
process.

Before beginning installation, do the following:

1. Refer to z/OS and z/OS.e Planning for Installation for installation planning
information.

2. Check with your IBM center or search the IBM problem database to find any
pertinent Preventative Service Planning (PSP). There may also be HOLDDATA
and PSP information for ICSF on the tape.

3. Make sure that you have all needed programs and their corequisites:

v If you use the Security Sever (RACF) and want access control and auditing
services for ICSF, you need the Security Server (RACF), an optional feature
of z/OS.

v If you are a Resource Measurement Facility (RMF) user, you need the
Resource Measurement Facility option available with z/OS.

4. Collect all required books and information. The Program Directory lists
publications useful during installation.

Chapter 1. Introduction to z/OS ICSF 5

|
|
|
|

5. Confirm you have adequate DASD storage and create SMP/E DDDEF entries
for each data set. See the Program Directory for details.

Note: ICSF, for compatibility reasons, uses storage below the line in CSA
(Common Storage Area). Some of the ICSF interface modules are
loaded when ICSF is started and others are loaded while ICSF is running
on an as needed basis. ICSF’s CSA usage of below the line storage may
be up to 36K.

6 z/OS V1R3.0 ICSF System Programmer’s Guide

Chapter 2. Installation, Initialization, and Customization

For this chapter, you need to understand the following terms:

installation options
You create an installation options data set that specifies these
options. They become active when you start ICSF, customizing how
ICSF runs on your system.

startup procedure
You create an ICSF startup procedure. Along with other information,
this specifies the name of the installation options data set.

SYS1.SAMPLIB
Contains samples, including an installation options data set, a
CKDS allocation job, a PKDS allocation job, a startup procedure, a
CICS Wait List data set, and sample JCL for SMP/E Delivery to
load keys by using a passphrase. You can update this code as
necessary and generally store the updated code in SYS1.PARMLIB
and SYS1.PROCLIB.

SYS1.PARMLIB
Generally contains the installation options data set. The installation
options data set can alternately be a member of a partitioned or
sequential data set.

SYS1.PROCLIB
Contains the startup procedure.

Steps in Installation and Initialization
Refer to the z/OS Program Directory for installation instructions. Several of the
installation steps in the z/OS Program Directory refer you to this manual for details.
This manual explains the following installation steps.

Note: You only need to perform the first five steps once. If you stop ICSF and want
to perform a subsequent SMP/E electronic delivery (this is optional), you only
need to start ICSF (step 6).

1. Customize SYS1.PARMLIB. “Customize SYS1.PARMLIB” on page 8 provides
details.

2. Create the Cryptographic Key Data Set (CKDS). “Create the CKDS” on page 8
describes this. Create the Public Key Data Set (PKDS). “Create the PKDS” on
page 10 describes this.

3. Create the installation options data set. “Create the Installation Options Data
Set” on page 12 provides details.

4. Create the startup procedure. “Create the ICSF Startup Procedure” on page 14
provides details.

5. Provide access to the ICSF panels. “Provide Access to the ICSF Panels” on
page 16 describes this.

6. Start ICSF for the first time. See “Start ICSF for the First Time” on page 17.
Once ICSF has been started, Master Keys can be entered. See z/OS ICSF
Administrator’s Guide for directions on entering Master Keys.

7. Only complete this step if ICSF is needed for SMP/E. Do not complete this step
for other applications.

© Copyright IBM Corp. 1997, 2002 7

|
|
|
|
|
|

|
|
|

|
|

Run the JCL to set the SMP/E pass phrase for SMP/E electronic delivery
(optional). “MK Initialization for SMP/E Only” on page 19 describes this.

Other chapters in this book, and z/OS ICSF Administrator’s Guide provide additional
installation information.

For information on installing the CICS-ICSF Attachment Facility, refer to Appendix B,
“Installing the CICS-ICSF Attachment Facility” on page 171.

For additional information on ICSF first time startup, refer to “Checklist for
First-Time Startup of ICSF” on page 177.

Customize SYS1.PARMLIB
The installation options data set you will create is generally stored in
SYS1.PARMLIB. If your administrator does not have access to SYS1.PARMLIB, you
need to use another data set instead.

Update the data set you are using as follows:

1. Add CEE.SCEERUN and CSF.SCSFMOD0 to the LNKLST concatenation This
adds the ICSF library to the z/OS library search. The following is an example of
an ICSF entry to the LNKLST concatenation.
CSF.SCSFMOD0

2. APF authorize CSF.SCSFMOD0, if LNKAUTH=APFTAB. The following is an
example of an ICSF entry for APF authorization.
APF ADD DSNAME(CSF.SCSFMOD0) VOLUME(******)

3. In the IKJTSOxx parameter, add CSFDAUTH and CSFDPKDS as a value in the
AUTHPGM parameter list and in the AUTHTSF parameter list. The following is
an example of an ICSF entry in the IKJTSOxx member.
AUTHPGM NAMES(/* AUTHORIZED PROGRAMS */ +
....
....
CSFDAUTH /* ISCF */ +
CSFDPKDS /* ISCF */ +

....

AUTHTSF NAMES(/* PROGRAMS TO BE AUTHORIZED WHEN */ +
/* WHEN CALLED THROUGH THE TSO */ +
/* SERVICE FACILITY */ +

....

....
CSFDAUTH /* ISCF */ +
CSFDPKDS /* ISCF */ +

4. If you will be using TKE V3.0 or later on this host, you should also add
CSFTTKE as a value in the AUTHCMD parameter list.

If you will only be using ICSF for SMP/E electronic delivery, this step does not
need to be performed. TKE is not needed for SMP/E electronic delivery.

z/OS MVS Initialization and Tuning Guide and z/OS MVS Initialization and Tuning
Reference provide more information.

Create the CKDS
The CKDS must be a key-sequenced data set with a fixed record length of 252
bytes. Allocate the CKDS on a permanently resident volume.

1. Determine the amount of primary space you need to allocate for the CKDS.

8 z/OS V1R3.0 ICSF System Programmer’s Guide

|
|

|
|
|

|

|
|

|

|
|

This should reflect the total number of entries you expect the data set to contain
originally. Besides transport keys, PIN keys, data-encrypting keys,
data-translating keys, and MAC keys, the CKDS contains a header record and
system keys that ICSF uses for processing. To run ICSF requires the header
record and four of the system keys. The other system keys, 48 NOCV
enablement keys and 7 ANSI enablement keys, are optional.

Your system needs NOCV enablement keys if it communicates with systems
that do not use control vectors, supports the use of DATA keys in the MAC
services, or needs to convert a CUSP/PCF CKDS. Your system needs ANSI
enablement keys if you distribute keys according to the ANSI X9.17 protocol.

If you intend to use both NOCV enablement keys and ANSI enablement keys
and you expect the CKDS to contain 100 transport, PIN, DATA, or MAC keys,
allocate enough primary space for 100 records, 59 system key records, and a
header record. For S/390 Enterprise Servers and S/390 Multiprise and IBM
Eserver zSeries, there may also be three enhanced system keys.

To use the SET callable services on a CDMF system, you need to install both
the NOCV keys and ANSI system keys.

2. Determine the amount of secondary space to allocate for CKDS.

This should reflect the total number of entries you expect to add to the data set.
For detailed information about calculating space for a VSAM data set, see
MVS/ESA VSAM Administration Guide, SC26-4518.

To access keys, VSAM uses the key label as the VSAM key. This means that
VSAM adds keys to the data set in collating sequence. That is, if two keys
named A and B are in the data set, A appears earlier in the data set than B. As
a result, adding keys to the data set can cause multiple VSAM control interval
splits and control area splits. For example, a split might occur if the data set
contains keys A, B, and E and you add C. In this case, C must be placed
between B and E. These splits can leave considerable free space in the data
set and can affect KGUP performance.

The amount of secondary space you allocate must take into account the
number of control interval and control area splits that might occur. If the disk
copy of the CKDS uses a significant amount of secondary space, you can copy
it into another disk copy that you created with more primary space. You can do
this by using the Access Method Services (AMS) REPRO command or the AMS
EXPORT/IMPORT commands.

The BUFFERSPACE parameter on the AMS DEFINE CLUSTER command
(required by Step 3) lets VSAM optimize space for control area and control
interval splits. For a detailed explanation of keyed-direct update processing and
what happens when control area and control interval splits occur, see MVS/DFP
Managing VSAM Data Sets.

3. Create an empty VSAM data set to use as the CKDS. ICSF provides a sample
job to define the CKDS in member CSFCKDS of SYS1.SAMPLIB.

Use the AMS DEFINE CLUSTER command to define the data set and to
allocate its space.

Note: To improve security and reliability of the data that is stored on the CKDS,
do the following:

v Use the ERASE and WRITECHECK parameters on the AMS DEFINE
CLUSTER command. ERASE overwrites data records with binary zeros when
the CKDS cluster is deleted. WRITECHECK provides hardware verification of
all data that is written to the data set.

v Create a Security Server (RACF) data set profile for the CKDS.

Chapter 2. Installation, Initialization, and Customization 9

|
|

|
|

|
|

|
|
|
|

|

Allocate a disk copy of the CKDS by defining a VSAM cluster as in the following
SYS1.SAMPLIB CSFCKDS member sample:
//CSFCKDS JOB
//**
//* THIS JCL DEFINES A VSAM CKDS TO USE FOR ICSF *
//* *
//* CAUTION: This is neither a JCL procedure nor a complete JOB. *
//* Before using this JOB step, you will have to make the following *
//* modifications: *
//* *
//* 1) Add the job parameters to meet your system requirements. *
//* 2) Be sure to change CSF to the appropriate HLQ if you choose *
//* not to use the default. *
//* 3) The CKDS needs to be on a permanently resident volume. *
//* *
//**
//DEFINE EXEC PGM=IDCAMS,REGION=4M
//SYSPRINT DD SYSOUT=*
//SYSIN DD *

DEFINE CLUSTER (NAME(CSF.CSFCKDS) -
VOLUMES(XXXXXX) -
RECORDS(100 50) -
RECORDSIZE(252,252) -
KEYS(72 0) -
FREESPACE(10,10) -
SHAREOPTIONS(2) -
UNIQUE) -

DATA (NAME(CSF.CSFCKDS.DATA) -
BUFFERSPACE(100000) -
ERASE -
WRITECHECK) -

INDEX (NAME(CSF.CSFCKDS.INDEX)) -
/*

You can change and use the Job Control Language according to the needs of
your installation. Please note that the JCL to define the CKDS differs from the
JCL that defines the PKDS (RECORDSIZE and CISZ parameters). For more
information about allocating a VSAM data set, see MVS/ESA VSAM
Administration Guide, SC26-4518.

Create the PKDS
Starting with OS/390 V2 R9 ICSF, the PKDS must be allocated and specified on the
PKDSN parameter of the options data set when you first start ICSF. ICSF support
for the PCI Cryptographic Coprocessor requires a PKDS. Even if not available at
first time start up, a PCI Cryptographic Coprocessor can be dynamically configured
online on a S/390 G5 Enterprise Server or higher. Since ICSF can not tell if a PCI
Cryptographic Coprocessor will be added, it requires the PKDS to be available at
start up.

The PKDS must be a key-sequenced data set with variable length records. Allocate
the PKDS on a permanently resident volume.

1. Determine the amount of primary space you need to allocate for the PKDS.

This should reflect the total number of entries you expect the data set to contain
originally. The PKDS will contain both public and private PKA keys. Each record
has a maximum size of 2.8 KB. The average record length for a private key is 1
KB, and for a public key is 0.5 KB. Allocate space for a minimum of two private
keys, one for digital signatures, and another for encipherment. In addition,
allocate enough space for the number of public keys you expect to store in the
PKDS. The number of public keys varies from system to system. Generally, only

10 z/OS V1R3.0 ICSF System Programmer’s Guide

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

those keys that are received from other users or systems are stored in the
PKDS. The public keys are used to send messages to the owners of the public
keys.

2. Determine the amount of secondary space to allocate for the PKDS.

This should reflect the total number of entries you expect to add to the data set.
For detailed information about calculating space for a VSAM data set, see
MVS/ESA VSAM Administration Guide, SC26-4518.

To access keys, VSAM uses the key label as the VSAM key. This means that
VSAM adds keys to the data set in collating sequence. That is, if two keys
named A and B are in the data set, A appears earlier in the data set than B. As
a result, adding keys to the data set can cause multiple VSAM control interval
splits and control area splits. For example, a split might occur if the data set
contains keys A, B, and E and you add C. In this case, C must be placed
between B and E.

The amount of secondary space you allocate must take into account the
number of control interval and control area splits that might occur. If the PKDS
uses a significant amount of secondary space, you can copy it into another disk
copy that you created with more primary space. You can do this by using the
Access Method Services (AMS) REPRO command or the AMS
EXPORT/IMPORT commands.

The BUFFERSPACE parameter on the AMS DEFINE CLUSTER command
(required by Step 3) lets VSAM optimize space for control area and control
interval splits. For a detailed explanation of keyed-direct update processing and
what happens when control area and control interval splits occur, see MVS/DFP
Managing VSAM Data Sets.

3. Create an empty VSAM data set to use as the PKDS. Use the AMS DEFINE
CLUSTER command to define the data set and to allocate its space. ICSF
provides a sample job to define the PKDS in member CSFPKDS of
SYS1.SAMPLIB.

Note: To improve security and reliability of the data that is stored on the PKDS,
do the following:

v Use the ERASE and WRITECHECK parameters on the AMS DEFINE
CLUSTER command. ERASE overwrites data records with binary
zeros when the PKDS cluster is deleted. WRITECHECK provides
hardware verification of all data that is written to the data set.

v Create a Security Sever (RACF) data set profile for the PKDS.

v The CISZ(8192) coded in the following sample in the DATA section is
a hardcoded requirement.

4. Allocate a disk copy of the PKDS by defining a VSAM cluster as in the following
SYS1.SAMPLIB CSFPKDS member sample:
//CSFPKDS JOB
//**
//* THIS JCL DEFINES A VSAM PKDS TO USE FOR ICSF - FOR SMP/E *
//* *
//* CAUTION: This is neither a JCL procedure nor a complete JOB. *
//* Before using this JOB step, you will have to make the following *
//* modifications: *
//* *
//* 1) Add the job parameters to meet your system requirements. *
//* 2) Be sure to change CSF to the appropriate HLQ if you choose *
//* not to use the default. *
//* 3) The PKDS needs to be on a permanently resident volume. *
//* *
//**
//DEFINE EXEC PGM=IDCAMS,REGION=4M

Chapter 2. Installation, Initialization, and Customization 11

|
|
|
|

|
|

|
|
|
|

|

|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

//SYSPRINT DD SYSOUT=*
//SYSIN DD *

DEFINE CLUSTER (NAME(CSF.CSFPKDS) -
VOLUMES(XXXXXX) -
RECORDS(100,50) -
RECORDSIZE(350,2800) -
KEYS(72 0) -
FREESPACE(0,0) -
SHAREOPTIONS(2,3) -
UNIQUE) -

DATA (NAME(CSF.CSFPKDS.DATA) -
BUFFERSPACE(100000) -
ERASE -
CISZ(8192) -
WRITECHECK) -

INDEX (NAME(CSF.CSFPPKDS.INDEX)) -

/*

You can change and use the Job Control Language according to the needs of
your installation. Please note that the JCL to define the PKDS differs from the
JCL that defines the CKDS (RECORDSIZE and CISZ parameters). For more
information about allocating a VSAM data set, see MVS/ESA VSAM
Administration Guide, SC26-4518.

Create the Installation Options Data Set
The installation options data set is a file that you create that contains installation
options. It becomes active when you start ICSF.

v The installation options data set can be a member of PARMLIB, a partitioned
data set, a member of a partitioned data set, or a sequential data set.

v The format of each record in the data set must be fixed length or fixed block
length.

v A physical line in the data set is 80 characters long. The system ignores any
characters in positions 72 to 80 of the line.

v A logical line is one or more physical lines. You can group physical lines into a
logical line by placing a comma at the end of the information. Only a comment
can appear after the comma. The system ignores any other information between
the comma and column 71.

v Continuation causes the next physical line to append immediately following the
comma. The system removes all leading blanks on the next physical line.

v You can delimit comments by /* and */ and include them anywhere within the
text. A comment cannot span physical records. The system removes comments
from a logical line before parsing it. It ignores physical lines that contain only
comments.

v Specify only one option setting or keyword on a logical line. (If you specify more
than one, the system ignores all but the last one on the line. The system reports
syntax errors, but the errors do not cause it to stop interpreting the file.)

ICSF provides two sample installation options data sets. These sample data sets
use the recommended values for each option.

1. When you are starting ICSF for the first time:

a. Change the name of the data set on the CKDSN and PKDSN statements to
the name of the empty VSAM datasets you created earlier (in Step 3 on
page 9 and Step 4 on page 11).

b. Change SSM(NO) to SSM(YES).

12 z/OS V1R3.0 ICSF System Programmer’s Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

|
|

|

|
|
|

|

c. For a complete description of options you may want to change after the first
start, see “Customizing ICSF after the First Start” on page 20.)

2. Store the updated data set in SYS1.PARMLIB.

Note: For convenience, the installation options data set generally resides in
SYS1.PARMLIB. If your cryptographic administrator does not have
update access to SYS1.PARMLIB, store installation options in another
data set, and RACF-protect it.

The two sample installation options data sets are as follows in SYS1.SAMPLIB:

v CSFPRM00
/* */
/* LICENSED MATERIALS - PROPERTY OF IBM */
/* */
/* "RESTRICTED MATERIALS OF IBM" */
/* 5694-A01 */
/* */
/* (C) COPYRIGHT IBM CORP. 1990, 2002 */
/* */
/* */
CKDSN(CSF.SCSFCKDS)
PKDSN(CSF.SCSFPKDS)
COMPAT(NO)
SSM(NO)
KEYAUTH(NO)
CHECKAUTH(NO)
TRACEENTRY(1000)
USERPARM(USERPARM)
COMPENC(DES)
REASONCODES(ICSF)
PKDSCACHE(64)

v CSFPRM01 (batch setup for SMP/E)
/* */
/* LICENSED MATERIALS - PROPERTY OF IBM */
/* */
/* "RESTRICTED MATERIALS OF IBM" */
/* 5694-A01 */
/* */
/* (C) COPYRIGHT IBM CORP. 1990, 2002 */
/* */
/*
CKDSN(CSF.SCSFCKDS)
PKDSN(CSF.SCSFPKDS)
COMPAT(NO)
SSM(YES)
KEYAUTH(NO)
CHECKAUTH(NO)
TRACEENTRY(1000)
USERPARM(USERPARM)
COMPENC(DES)
REASONCODES(ICSF)
PKDSCACHE(64)

Note: See “Changing Parameters in the Installation Options Data Set” on page 20
for descriptions of these parameters.

Starting with OS/390 V2 R9 ICSF, the use of system symbols in the options data
set will be supported. System symbols can be used as values for any of the
parameters. System symbols must be no more than 8 characters. ICSF allows the

Chapter 2. Installation, Initialization, and Customization 13

|
|

|

|
|
|
|

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|
|
|

CKDS and PKDS data set names to be a maximum of 44 characters with up to 21
qualifiers. See “Changing Parameters in the Installation Options Data Set” on
page 20 for additional information.

The following example shows how system symbols could be used for the CKDS
and PKDS data set names. You could use a SYS1.PARMLIB(IEASYMxx) file and
modify CSFPRM01.

IEASYMxx file could contain:
/*------------------------------------*/
/* SYSTEM SYMBOLS FOR ICSF CRYPTO */
/*------------------------------------*/
SYSDEF
SYMDEF(&CKDSN001=’CSF’)
SYMDEF(&CKDSN002=’CSFCKDS’)
SYMDEF(&PKDSN001=’CSF’)
SYMDEF(&PKDSN002=’CSFPKDS’)

CSFPRM01 could be modified as follows:
/* */
/* LICENSED MATERIALS - PROPERTY OF IBM */
/* */
/* "RESTRICTED MATERIALS OF IBM" */
/* 5694-A01 */
/* */
/* (C) COPYRIGHT IBM CORP. 1990, 2002 */
/* */
/* */
CKDSN(&CKDSN001..&CKDSN002)
PKDSN(&PKDSN001..&PKDSN002)
COMPAT(NO)
SSM(YES)
KEYAUTH(NO)
CHECKAUTH(NO)
TRACEENTRY(1000)
USERPARM(USERPARM)
COMPENC(DES)
REASONCODES(ICSF)
PKDSCACHE(64)

When the machine or partition is IPLed, specify within the load parameter the
symbol file that should be used. For example, if the above symbol file was called
IEASYM01, then within the load member, the IEASYM entry might look like
IEASYM(00,01); where 00 denotes the IEASYM00 file (usually the system default)
and 01 denotes the IEASYM01 file.

For SMP/E, CSFPRM01 can be copied to the CPAC.PARMLIB data set. The CKDS
and PKDS data set names in CSFPRM01 need to match in Server-Pac. Outside of
Server-Pac, you need to copy and edit CSFPRM01.

Create the ICSF Startup Procedure
ICSF provides the following two job control language programs. You can use this
code as the basis for your startup procedure.

v member CSF in SYS1.SAMPLIB
//CSF PROC
//CSF EXEC PGM=CSFMMAIN,REGION=6M,TIME=1440
//CSFLIST DD SYSOUT=A,LRECL=132,BLKSIZE=132,HOLD=YES
//CSFPARM DD DSN=SYS1.PARMLIB(CSFPRM00),DISP=SHR

v member CSFSTART in SYS1.SAMPLIB (batch setup for SMP/E)

14 z/OS V1R3.0 ICSF System Programmer’s Guide

|
|
|

|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

|
|
|

|
|

|

|
|
|
|

|

//CSFSTART PROC
//CSFSTART EXEC PGM=CSFMMAIN,REGION=6M,TIME=1440
//CSFLIST DD SYSOUT=A,LRECL=132,BLKSIZE=132,HOLD=YES
//CSFPARM DD DSN=SYS1.PARMLIB(CSFPRM01),DISP=SHR

Store this startup PROC in SYS1.PROCLIB (or another suitable library). For
SMP/E this proc can be copied to the CPAC.PROC data set, and the data set
name (SYS1.PARMLIB) can be copied to match the name you chose for the
CPAC.PARMLIB data set (in which CSFPRM01 would be placed). This would
work for Server-Pac. Outside of Server-Pac, you need to copy and edit
CSFSTART.

1. Change or use the sample startup procedure according to your needs.

a. In the sample code, the first line is the PROC statement. You can add one
or more procedure variables to the PROC statement. For example, you can
allow the system operator to decide at start time which member of the
installation options data set to use. The following example allows the
operator to enter START CSF,M=CSFPRM01, specifying an alternate set of
start-up options.
//CSF PROC M=CSFPRM00...
//CSFPARM DD DSN=MY.ICSF.PARM(&M),DISP=SHR;

You can use the same principle to change the name of a sequential data
set, if you are not using a partitioned data set.

b. The third line is the CSFLIST DD statement. This must specify the CSFLIST
data set. (The CSFLIST data set contains messages pertaining to running
ICSF, input and output errors, and processing parameters. For an
explanation of these messages, see z/OS ICSF Messages.) You can specify
SYSOUT to direct the CSFLIST data set to a data set with suitable space
and DCB characteristics.

c. Also on the CSFLIST DD statement, you can add FREE=CLOSE. This is
useful if a problem occurs during startup. When message CSFM001I is
displayed, you can browse the CSFLIST data set or use a product to browse
the SYSOUT file on the JES2 Spool data set.

d. The last line is the CSFPARM DD statement. The sample code specifies
SYS1.PARMLIB as the data set where the installation options data set is
stored. If you stored the installation options data set elsewhere, replace
SYS1.PARMLIB with the name of the data set where you stored the
installation options.

e. The CSFPARM DD statement also specifies member CSFPRM00 as the
name of the installation options data set. If you used a different name when
you created the installation options data set (or any time you want to use
other options), change this member name.

2. Store your startup procedure in SYS1.PROCLIB (or another suitable library) with
a member name of your choice. (Depending on installation standards, possible
names include CSF, CSFPROD, CSFTEST, and CRYPTO.)

3. If you use Security Server (RACF), you may need to update the RACF Started
Procedure Table if you define a new started task:

a. Add the new started task name

b. Add a RACF userid to associate with the started task. This userid requires
the following:

v READ access to the data set to which the CSFPARM JCL DD statement
refers

Chapter 2. Installation, Initialization, and Customization 15

|
|
|
|

|
|
|
|
|
|

v If it refers to a data set, UPDATE access to the CSFLIST statement JCL
DD statement (SYSOUT requires no RACF authority)

v Define all CKDSs in every installation option data set.

c. Optionally, you can add a RACF group name.

Note: RACF uses the userid associated with the ICSF address space only
when accessing the CKDS named in the installation options data set and
then only at ICSF startup. When you perform a CKDS Refresh task by
using the ICSF ISPF panels under TSO/E, RACF uses the TSO userid to
determine access authorization. When the CKDS Refresh task is a batch
job, RACF uses the userid associated with the batch address space to
determine access authorization.

Provide Access to the ICSF Panels
To provide a way for the administrator to access the ICSF panels, you can create
an ICSF option on the ISPF Primary Option Menu. Access the code for the ISPF
Primary Option Menu panel body and perform the following steps:

1. Under the % OPTION ===> _ZCMD line, add the following line:
% <option value> - ICSF Panels

You can specify either a letter or number for the option value. Do not use an
option value that already exists in the menu.

2. On the &ZSEL= TRANS(&ZQ line, add the following information:
<option value>,’PANEL(CSF@PRIM)’

The option value should be the same value as the option value you chose to
use in the preceding step.

When you access the ISPF Primary Option Menu panel, the ICSF panels option
appears on the menu. You can choose the ICSF option value to access the ICSF
panels.

You must also update the logon procedure that is used by ICSF administrators who
will use the ICSF panels. For example:

//SYSPROC DD ...
.
.
.
// DD DSN=CSF.SCSFCLI0,DISP=SHR
.
.
.
//ISPPLIB DD ...
.
.
.
// DD DSN=CSF.SCSFPNL0,DISP=SHR
.
.
.
//ISPMLIB DD ...
.
.
.
// DD DSN=CSF.SCSFMSG0,DISP=SHR
.
.
.

16 z/OS V1R3.0 ICSF System Programmer’s Guide

//ISPSLIB DD ...
.
.
.
// DD DSN=CSF.SCSFSKL0,DISP=SHR
.
.
.
// ISPTLIB
.
.
.
// DD DSN=CSF.SCSFTLIB,DISP=SHR
.
.
.

An alternate method to access the ICSF panels is to use ISPF LIBDEF. Here is a
sample clist.

/* Rexx */
/* IBMs ICSF */

address ispexec

"LIBDEF ISPPLIB DATASET ID(’CSF.SCSFPNL0’) STACK"
"LIBDEF ISPMLIB DATASET ID(’CSF.SCSFMSG0’) STACK"
"LIBDEF ISPSLIB DATASET ID(’CSF.SCSFSKL0’) STACK"
"LIBDEF ISPTLIB DATASET ID(’CSF.SCSFTLIB’) STACK"

address tso "ALTLIB ACTIVATE APPLICATION(CLIST)
DATASET(’CSF.SCSFCLI0’)"

"SELECT PANEL(CSF@PRIM)"
address tso "ALTLIB DEACTIVATE APPLICATION(CLIST)"

"LIBDEF ISPSLIB"
"LIBDEF ISPPLIB"
"LIBDEF ISPMLIB"
"LIBDEF ISPTLIB"

The z/OS Program Directory lists additional installation steps, and some of these
steps depend on the system from which you are migrating. See z/OS Program
Directory, other chapters in this book, and z/OS ICSF Administrator’s Guide for
details about the remaining steps.

Start ICSF for the First Time
Before starting ICSF for the first time, ensure that you have completed the following
steps. For additional information on starting ICSF for the first time, see Appendix C,
“Helpful Hints for ICSF First Time Startup” on page 177.
v Created an empty data set for use as a CKDS
v Specified the CKDS name in the installation options data set
v Created an empty data set for use as a PKDS (required for OS/390 V2 R9 ICSF

or higher)
v Specified the PKDS name in the installation options data set (required for

OS/390 V2 R9 ICSF or higher)
v Created a startup procedure
v Installed ICSF

Before using ICSF you must initialize it, which you are now ready to do.

1. Enter the START command and the startup procedure name. In the following
example, CSF is the name of the startup procedure.

Chapter 2. Installation, Initialization, and Customization 17

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

START CSF

When you start ICSF, you specify the name of the ICSF startup procedure you
created (see “Create the ICSF Startup Procedure” on page 14). See “Starting
and Stopping ICSF” on page 122 for more information about starting and
stopping ICSF.

Note: If you start CSF using CSFSTART and then run the CSFSETMK JCL to
set the master keys and initialize the CKDS, the DES master keys will be
set and the PKA master keys will be set in the Cryptographic
Coprocessor Feature, and the CKDS will be initialized using the
appropriate pass phrase. If your environment has PCI Cryptographic
Coprocessors, they will not be initialized by this process. Only the
Cryptographic Coprocessor Feature is initialized. If you need to initialize
the PCI Cryptographic Coprocessor, see z/OS ICSF Administrator’s
Guide for additional information on using the Pass Phrase Initialization
Utility. If you re-IPL or stop ICSF and want to perform a subsequent
SMP/E E-delivery, you only need to start ICSF (providing you wish to
reuse the previously established options and parameters).

2. Access the ICSF panels to define a master key and initialize the CKDS. For a
description of how to use the ICSF panels to define a master key and initialize
the CKDS at first-time startup, see z/OS ICSF Administrator’s Guide.

Notes:

1. When you start ICSF for the first time, you’ll see the following messages. You’ll
receive message CSFM511E for each Cryptographic Coprocessor Feature you
have online.
S CSFEC70
$HASP100 CSFEC70 ON STCINRDR
IEF695I START CSFEC70 WITH JOBNAME CSFEC70 IS ASSIGNED TO USER
++++++++
$HASP373 CSFEC70 STARTED
IEF403I CSFEC70 - STARTED - TIME=10.11.35
CSFM100E CRYPTOGRAPHIC KEY DATA SET, ECHAN.DOMAIN7.CKDS IS NOT
INITIALIZED.
CSFM511E CRYPTOGRAPHY - MASTER KEY ON COPROCESSOR 0, CPU 0 IS NOT VALID.
CSFM511E CRYPTOGRAPHY - MASTER KEY ON COPROCESSOR 1, CPU 4 IS NOT VALID.
CSFM106A CRYPTOGRAPHY - PKA MASTER KEYS ARE NOT VALID.
CSFM411I PCI CRYPTOGRAPHIC ACCELERATOR Axx IS ACTIVE.
CSFM001I ICSF INITIALIZATION COMPLETE

2. When you are starting ICSF for the first time and loading the first master key
and initializing one or more CKDSs, you provide the name of the empty VSAM
data set you defined earlier (see step 3 on page 9) to use for the CKDS when
starting ICSF.

3. While ICSF processes the data set, it requires exclusive use so that no one can
make changes while the data set is read. ICSF releases the data set when it
completes startup processing.

4. During CKDS initialization or refresh, ICSF reads the CKDS into extended
private storage. Make sure that the region size is sufficient for reading in the
entire data set.

5. You can add keys to the CKDS in several ways. See “The Cryptographic Key
Data Set (CKDS)” on page 2 for details.

6. You can also write application programs to call services to perform
cryptographic functions. See “Creating ICSF Exits and Generic Services” on
page 29 for details.

18 z/OS V1R3.0 ICSF System Programmer’s Guide

|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|

MK Initialization for SMP/E Only
Run the JCL to set the SMP/E pass phrase for SMP/E electronic delivery only. The
JCL uses a pass phrase value to load the DES and PKA master keys. The DES
and PKA master keys will be set in the Cryptographic Coprocessor Feature.
Change This Pass Phrase is the default pass phrase. The entry point is CSFEUTIL
and will have 2 or (optionally) 3 parameters. The first parameter must be the CKDS
name. The second parameter (optional) is the pass phrase. The last parameter is
the function PPINIT. If you do not use the default pass phrase and create your own:

v It must be sixteen to sixty-four bytes in length.

v Any EBCDIC character is allowed.

v Leading and trailing blanks will be removed.

v Embedded blanks are allowed.

See the example below:
//CSFSETMK JOB (JOB CARD PARAMETERS)
//**
//* Licensed Materials - Property of IBM *
//* 5694-A01 *
//* (C) Copyright IBM Corp. 2002 *
//* *
//* THIS JCL USES A PASS PHRASE VALUE TO LOAD DES AND PKA MASTER KEYS*
//* *
//* CAUTION: This is neither a JCL procedure nor a complete JOB. *
//* Before using this JOB step, you will have to make the following *
//* modifications: *
//* *
//* 1) Add the job parameters to meet your system requirements. *
//* 2) The first parameter must be the CKDS name *
//* 3) An optional second parameter may be used. The second *
//* parameter must be 16-64 character pass phrase. *
//* For the pass phrase any EBCDIC character is allowed. *
//* Leading and trailing blanks will be removed. *
//* Embedded blanks are allowed. *
//* It is STRONGLY recommended that the pass phrase NOT contain *
//* any commas. Commas are used as a delimiter for the *
//* parameters of the CSFEUTIL program. *
//* 4) The last parameter must be the function PPINIT. *
//* 5) If the default pass phrase of "Change This Pass Phrase" *
//* is desired, the PARM= would look like this: *
//* PARM=’CSF.CSFCKDS,PPINIT’ *
//* *
//* If a customer selected pass phrase is to be used the *
//* PARM= would look like this: *
//* PARM=’CSF.CSFCKDS,Different Pass Phrase,PPINIT’ *
//* *
//**
//* User supplied pass phrase of Different Pass Phrase
//STEP EXEC PGM=CSFEUTIL,
// PARM=’CSF.CSFCKDS,Different Pass Phrase,PPINIT’
//SYSPRINT DD SYSOUT=*
//*

OR:

//* Using the default pass phrase of Change This Pass Phrase
//STEP EXEC PGM=CSFEUTIL,
// PARM=’CSF.CSFCKDS,PPINIT’
//SYSPRINT DD SYSOUT=*
//*

Chapter 2. Installation, Initialization, and Customization 19

|

|
|
|
|
|
|
|

|

|

|

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

In order to successfully run the CSFSETMK job, determine if the following services
are RACF protected in the CSFSERV class. If the services below are not RACF
protected in the CSFSERV class, then nothing needs to be done. If the services are
protected in the CSFSERV class, then the issuer of the CSFSETMK JCL must be
permitted to the profile for each service.

v CSFOWH

v CSFPMCI

v CSFCMK

v CSFREFR

Customizing ICSF after the First Start
The startup procedure includes a CSFPARM DD statement, which gives the name
of the installation options data set. The installation options data set includes a
CKDSN option, which gives the names of the CKDS, and a PKDSN option, which
gives the name of the PKDS.

After the first start, whenever you restart ICSF, the CKDS named in the installation
options data set becomes the active in-storage CKDS.

To change the active in-storage CKDS (or any other installation option), change the
option value in the installation options data set and stop and restart ICSF.

Changing Parameters in the Installation Options Data Set
The installation options data set is an intended programming interface.

When specifying parameter values within parentheses, leading and trailing blanks
are ignored. Embedded blanks may cause unpredictable results.

Starting with OS/390 V2 R9 ICSF, support is provided for the use of system
symbols in the installation options data set. System symbols can be used as values
for any of the parameters. System symbols are specified in the IEASYMxx member
of SYS1.PARMLIB; the IEASYM statement of the LOADxx member of
SYS1.PARMLIB specifies the IEASYMxx member(s) to be used for the resolution of
system symbols. The following example shows the use of a system symbol for
specifying the domain to be used for the start of ICSF:
DOMAIN(&PARDOM.)

When the Installation Options Data Set is processed during the start of ICSF, the
value of the system symbol PARDOM will be substituted as the value of the
DOMAIN parameter.

For the first start, you specified an empty VSAM data set name for the CKDS in the
CKDSN option, an empty VSAM data set name for the PKDS in the PKDSN option,
and SSM(YES). You may want to change these and other options for subsequent
starts. Here is a complete list of installation options:

CHECKAUTH(YES or NO)
Indicates whether ICSF performs security access control checking of
Supervisor State and System Key callers. If you specify
CHECKAUTH(YES), ICSF performs the checking. If you specify
CHECKAUTH(NO), this results in significant performance enhancement for
Supervisor State and System Key callers.

20 z/OS V1R3.0 ICSF System Programmer’s Guide

|
|
|
|
|

|

|

|

|

If you do not specify the CHECKAUTH option, the default is
CHECKAUTH(NO).

CKDSN(data-set-name)
Specifies the CKDS name the system uses to start ICSF. Whenever you
restart ICSF, the CKDS named in the CKDSN option becomes the active
in-storage CKDS. (At first-time startup, you should specify the name of an
empty VSAM data set you created to use as the CKDS.)

If you do not specify this keyword, ICSF does not become active. There is
no default for this option, so you must specify a value.

COMPAT(YES, NO, or COEXIST)
Indicates whether ICSF runs in compatibility mode, non-compatibility mode,
or coexistence mode with CUSP/PCF.

YES Indicates compatibility mode.

In compatibility mode, you can run a CUSP and PCF
application on ICSF, because ICSF supports the CUSP and
PCF macros. You do not have to reassemble CUSP and
PCF applications to do this. You cannot start CUSP or PCF
at the same time as ICSF on the same operating system.

NO Indicates non-compatibility mode. In noncompatibility
mode, you run CUSP applications on CUSP, PCF
applications on PCF, and ICSF applications on ICSF. You
cannot run CUSP or PCF applications on ICSF, because
ICSF does not support the CUSP and PCF macros in this
mode. CUSP or PCF can be started at the same time as
ICSF on the same operating system. You can start ICSF
and then start CUSP or PCF, or you can start CUSP or
PCF and then start ICSF.

You should use noncompatibility mode unless you are
migrating from CUSP or PCF to ICSF.

COEXIST Indicates coexistence mode.

In coexistence mode, you can run a CUSP or PCF
application on CUSP or PCF, or you can reassemble the
CUSP or PCF application to run on ICSF. To do this, you
reassemble the application against coexistence macros that
are shipped with ICSF. You can start CUSP or PCF at the
same time as ICSF on the same operating system.

If you do not specify the COMPAT option, the default value is
COMPAT(NO). See “Running CUSP/PCF and z/OS ICSF on the Same
System” on page 31 for a complete description of the COMPAT options.

When you initialize ICSF for the first time, noncompatibility mode must be
active. Therefore, at first-time startup, you must specify COMPAT(NO) or
allow the default to be used.

COMPENC(DES or CDMF)
Specifies the encryption algorithm to use for the CUSP/PCF compatibility
CIPHER macro. For S/390 Enterprise Servers and S/390 Multiprise
processors only, you can select the ANSI Data Encryption Standard (DES)
or the Commercial Data Masking Facility (CDMF). For bipolar processors,
only DES is available.

Chapter 2. Installation, Initialization, and Customization 21

Your system can be DES-only, CDMF-only, or DES-CDMF. Specify
COMPENC(DES) for a DES-only system. Specify COMPENC(CDMF) for a
CDMF-only system. These are the defaults for these types of systems. If
you specify an incorrect keyword (for example, DES for a CDMF-only
system), the CIPHER macro fails with RC = 4 and the cryptographic facility
is not available.

You can specify either COMPENC(DES) or COMPENC(CDMF) for a
DES-CDMF system; the default is DES.

DOMAIN(n)
Specifies the number of the domain that you want to use for this start of
ICSF. You can specify only one domain in the options data set.

Beginning with z/OS V1 R2, DOMAIN is an optional parameter. The
DOMAIN parameter is only required if more than one domain is specified as
the usage domain on the PR/SM panels or if running in native mode. If
specified in the options data set, it will be used and it must be one of the
usage domains for the LPAR.

If DOMAIN is not specified in the options data set, ICSF determines which
domains are available in this LPAR. If only one domain is defined for the
LPAR, ICSF will use it. If more than one is available, ICSF will issue error
message CSFM409E.

The cryptographic processors support multiple sets of master key registers,
which the specific domain values identify. The Cryptographic Coprocessor
Feature has a master key register for the DES master key, the auxiliary
DES master key, the signature master key and the key management master
key. The auxiliary DES master key register may contain either the new or
old DES master key. On the PCI Cryptographic Coprocessor, each domain
has a master key register for the current, new, and old SYM-MK and
ASYM-MK.

For more information about partitions and running different configurations,
see “Using Different Configurations” on page 123.

If you run ICSF in compatibility or coexistence mode, you cannot change
the domain number without re-IPLing the system. A re-IPL ensures that a
program does not access a cryptographic service with a key that is
encrypted under a different master key. If you are certain that no
cryptographic applications are still running, you can do the following:

1. Stop CSF

2. Start CSF in COMPAT(NO) mode with a different domain number

3. Stop CSF

4. Start CSF in compatibility or coexistence mode with a different domain
number.

EXIT(ICSF-name,load-module-name,FAIL(fail-option))
Indicates information about an installation exit.

The ICSF-name is the identifier for each exit. Table 1 on page 23 lists all the
ICSF exit names and explains when ICSF calls each exit. The load module
name is the name of the module that contains the exit. The name can be
any valid name your installation chooses.

Using the FAIL keyword of the EXIT statement, you specify the action ICSF,
the KGUP, or the CUSP/PCF conversion program takes if the exit ends
abnormally. The fail action that you specify applies to subsequent calls of

22 z/OS V1R3.0 ICSF System Programmer’s Guide

the exit. If an exit ends abnormally, ICSF takes a system dump. The exit is
protected with an ESTAE or the ICSF service functional recovery routine
(FRR).

In general, you can specify one of the following values for a fail option:

NONE No action is taken. The exit can be called again and will end
abnormally again.

EXIT The exit is no longer available to be called again.

SERVICE
The service or program that called the exit is no longer available to
be called again.

ICSF ICSF or the key generator utility program or the CUSP/PCF
conversion program is ended, depending on the exit.

Some fail options are not valid for a specific exit. If you specify a fail option
that is not valid, ICSF uses the next valid fail option. For example, if
SERVICE is not a valid fail option for an exit, ICSF uses the EXIT option.

Table 1. Exit Identifiers and Exit Invocations

Exit Identifiers Exit Invocations

CSFEXIT1 Gets control after the operator issues the START command, but before processing
takes place.
Note: You must not specify an EXIT statement for the first mainline exit, CSFEXIT1.

CSFEXIT2 Gets control after ICSF reads and interprets the installation options data set.

CSFEXIT3 Gets control before ICSF completes initialization.

CSFEXIT4 Gets control after the operator issues the STOP command to stop ICSF.

CSFEXIT5 Gets control when the operator issues the MODIFY command to modify ICSF.

CSFEMK Gets control during the compatibility service for the CUSP/PCF EMK macro.

CSFGKC Gets control during the compatibility service for the CUSP/PCF GENKEY macro.

CSFRTC Gets control during the compatibility service for the CUSP/PCF RETKEY macro.

CSFEDC Gets control during the compatibility service for the CUSP/PCF CIPHER macro.

CSFCKDS Gets control when a callable service retrieves an entry from the CKDS.

CSFKGUP Gets control during key generator utility program initialization, processing, and
termination.

CSFCONVX Gets control when you run the CUSP/PCF CKDS conversion program.

CSFSRRW Gets control when an access to a single record in the CKDS is made using the key
entry hardware.

CSFAEGN Gets control during the ANSI X9.17 EDC generate callable service.

CSFAKEX Gets control during the ANSI X9.17 key export callable service.

CSFAKIM Gets control during the ANSI X9.17 key import callable service.

CSFAKTR Gets control during the ANSI X9.17 key translate callable service.

CSFAKTN Gets control during the ANSI X9.17 transport key partial notarize callable service.

CSFCKI Gets control during the clear key import callable service.

CSFCPE Gets control during the clear PIN encrypt callable service.

CSFCPA Gets control during the clear PIN generate alternate callable service.

CSFCTT Gets control during the ciphertext translate callable service.

CSFCTT1 Gets control during the ciphertext translate (with ALET) callable service.

Chapter 2. Installation, Initialization, and Customization 23

Table 1. Exit Identifiers and Exit Invocations (continued)

Exit Identifiers Exit Invocations

CSFPGN Gets control during the Clear PIN generate callable service.

CSFCVT Gets control during the control vector translate callable service.

CSFCVE Gets control during the cryptographic variable encipher callable service.

CSFDKX Gets control during the data key export callable service.

CSFDKM Gets control during the data key import callable service.

CSFDEC Gets control during the decipher callable service.

CSFDEC1 Gets control during the decipher (with ALET) callable service.

CSFDCO Gets control during the decode callable service.

CSFDSG Gets control during the digital signature generate service.

CSFDSV Gets control during the digital signature verify callable service.

CSFDKG Gets control during the diversified key generate callable service.

CSFENC Gets control during the encipher callable service.

CSFENC1 Gets control during the encipher (with ALET) callable service.

CSFECO Gets control during the encode callable service.

CSFEPG Gets control during the encrypted PIN generate callable service.

CSFPTR Gets control during the encrypted PIN translate callable service.

CSFPVR Gets control during the encrypted PIN verify callable service.

CSFKEX Gets control during the key export callable service.

CSFKGN Gets control during the key generate callable service.

CSFKIM Gets control during the key import callable service.

CSFKPI Gets control during the key part import callable service.

CSFKRC Gets control during the key record create callable service.

CSFKRD Gets control during the key record delete callable service.

CSFKRR Gets control during the key record read callable service.

CSFKRW Gets control during the key record write callable service.

CSFKYT Gets control during the key test callable service.

CSFKYTX Gets control during the key test extended callable service.

CSFMDG Gets control during the MDC generate callable service.

CSFKTR Gets control during the key translate callable service.

CSFMGN1 Gets control during the MAC generate (with ALET) callable service.

CSFMVR Gets control during the MAC verify callable service.

CSFMVR1 Gets control during the MAC verify (with ALET) callable service.

CSFMDG1 Gets control during the MDC generate (with ALET) callable service.

CSFMGN Gets control during the MAC generate callable service.

CSFCKM Gets control during the multiple clear key import callable service.

CSFSKM Gets control during the multiple secure key import callable service.

CSFOWH Gets control during the one-way hash generate callable service.

CSFOWH1 Gets control during the one-way hash generate (with ALET) callable service.

CSFPCI Gets control during the PCI interface callable service.

CSFPEX Gets control during the prohibit export callable service.

24 z/OS V1R3.0 ICSF System Programmer’s Guide

Table 1. Exit Identifiers and Exit Invocations (continued)

Exit Identifiers Exit Invocations

CSFPEXX Gets control during the prohibit export extended callable service.

CSFPKD Gets control during the PKA decrypt callable service.

CSFPKE Gets control during the PKA encrypt callable service.

CSFPKG Gets control during the PKA key generate callable service.

CSFPKI Gets control during the PKA key import callable service.

CSFPKTC Gets control during the PKA key token change callable service.

CSFPKX Gets control during the PKA Public Key Extract callable service.

CSFPKRC Gets control during the PKDS record create callable service.

CSFPKRD Gets control during the PKDS record delete callable service.

CSFPKRR Gets control during the PKDS record read callable service.

CSFPKRW Gets control during the PKDS record write callable service.

CSFPKSC Gets control during the PKSC interface callable service.

CSFRNG Gets control during the random number generate callable service.

CSFRKD Gets control during the retained key delete callable service.

CSFRKL Gets control during the retained key list callable service.

CSFSKI Gets control during the secure key import callable service.

CSFSKY Gets control during the secure messaging for keys callable service.

CSFSPN Gets control during the secure messaging for PINs callable service.

CSFSBC Gets control during the SET block compose callable service.

CSFSBD Gets control during the SET block decompose callable service.

CSFSYX Gets control during the symmetric key export callable service.

CSFSYG Gets control during the symmetric key generate callable service.

CSFSYI Gets control during the symmetric key import callable service.

CSFTCK Gets control during the transform CDMF key callable service.

CSFUDK Gets control during the user derived key callable service.

CSFCSG Gets control during the VISA CVV service generate callable service.

CSFCSV Gets control during the VISA CVV service verify callable service.

See Chapter 7, “Installation Exits” on page 75 for a detailed description of
each ICSF exit, including the valid fail options.

Note: z/OS no longer ships IBM-supplied security exit routines; the security
exit points remain. Users of z/OS should use the Security Server
(RACF) or an equivalent product to obtain access checking of
services and keys. ICSF no longer needs these exit routines.

KEYAUTH(YES or NO)
Indicates whether or not ICSF authenticates a key entry after ICSF retrieves
one from the in-storage CKDS. If you specify KEYAUTH(YES), ICSF
authenticates the key. ICSF generates a message authentication code
(MAC) for each key entry in the CKDS when you create or update the entry.
If you specify KEYAUTH(YES), ICSF performs a MAC verification to ensure
that the entry has not changed. If you specify KEYAUTH(NO), ICSF does

Chapter 2. Installation, Initialization, and Customization 25

not perform this authentication and gains a small performance
enhancement. If you do not specify the KEYAUTH option, the default value
is KEYAUTH(NO).

MAXLEN(n)
Defines the maximum length of characters in a text string, including any
necessary padding, for some callable service requests. For example, this
option defines the maximum length of the text the encipher service encrypts
for each call. Specify n as a decimal value from 1024 through 2147483647.
If you do not specify the MAXLEN option, the default value is
MAXLEN(65535).

Beginning with z/OS V1 R2, the MAXLEN parameter may still be specified
in the options data set, but only the maximum value limit will be enforced
(2147483647). If a value greater than this is specified, an error will result
and ICSF will not start.

Note: Beginning with z/OS V1 R2, MAXLEN is no longer displayed on the
Installation Option Display panel.

PKDSCACHE(n)
Defines the size of the PKDS Cache in records. The PKDS cache improves
performance as it facilitates access to frequently used records. Specify n as
a decimal value from 0 to 256. If n is zero, no cache will be implemented. If
PKDSCACHE is not specified, the default value is 64. PKDSCACHE can be
implemented on OS/390 V2R10 and z/OS V1 R1 by installing APAR
OW48568.

PKDSN(data-set-name)
Specifies the PKDS name that ICSF initializes. With previous releases of
OS/390, this keyword was optional. Starting with OS/390 V2 R9 ICSF,
however, this keyword is now required. ICSF will not start without it.
Specifying this keyword in your installation options data set allows you to
store PKA key tokens in this VSAM data set. You can then refer to these
tokens by key label in your applications.

There is no default for this option.

REASONCODES(ICSF or TSS)
Specifies which set of reason codes are to be returned from callable
services. If you do not specify the REASONCODES option, the default of
REASONCODES(ICSF) is used. If you specify REASONCODES(TSS), TSS
reason codes will be returned. If there is a 1-to-1 mapping, the codes will
be converted. If there is not a map to ICSF, the column will be blank. If
there are multiple mappings, they will be listed as reference only and will
not be converted.

SERVICE(service-number,load-module-name,FAIL(fail-option))
Indicates information about an installation-defined service.

ICSF allows an installation to define its own service similar to an ICSF
callable service. The service-number specifies a number that identifies the
service to ICSF. The valid service numbers are 1 through 32767, inclusive.
This set of service numbers is valid for both installation-defined services
and UDX services. The service number of an installation-defined service
must not be the same as the service number of a UDX service. The
load-module-name is the name of the module that contains the service.
During ICSF startup, ICSF loads this module and binds it to the
service-number you specified.

26 z/OS V1R3.0 ICSF System Programmer’s Guide

The fail-option is YES or NO, indicating the action ICSF should take if
loading the service ends abnormally.

YES Specifies that ICSF ends abnormally if your service cannot be
loaded.

NO Specifies that ICSF continues to start if your service cannot be
loaded.

If the service itself ends abnormally, ICSF does not end, but takes a system
dump instead. The ICSF service functional recovery routine (FRR) protects
the service.

See Chapter 6, “Installation-Defined Callable Services” on page 69 for a
description of how to write and run an installation-defined callable service.

SSM(YES or NO)
Specifies whether or not an installation can enable special secure mode
(SSM) while running ICSF. SSM lowers the security of your system to let
you enter clear keys and generate clear PINs. You must enable SSM for
KGUP to permit generation or entry of clear keys and to enable the secure
key import or clear pin generate callable services.

YES Indicates that you can enable the SSM.

NO Indicates that you cannot enable the SSM.

If you do not specify the SSM option, the default value is SSM(NO).

Note: When you initialize ICSF for the first time, SSM must be active.
Therefore, at first-time startup, you must specify SSM(YES).

You must perform the following tasks to make SSM active:
v Specify SSM(YES) in the installation options data set
v Enable SSM in the cryptographic hardware
v When running under a logical partition (LPAR), enable SSM for each

partition.

SSM must be enabled or disabled in ALL places or errors may be logged
and functions will not work as expected.

For S/390 Enterprise Servers and S/390 Multiprise servers and IBM
Eserver zSeries, the setting of the Environment Control Mask (ECM)
enables SSM. For details, refer to Support Element Operations Guide. For
S/390 Enterprise Servers and S/390 Multiprise servers and IBM Eserver
zSeries without TKE, the supplied ECM enables SSM. For S/390 Enterprise
Servers and S/390 Multiprise processors with TKE, you can set the ECM
directly; the supplied ECM enables SSM, but you have the ability to disable
it. For details, refer to z/OS ICSF TKE Workstation User’s Guide 2000.

TRACEENTRY(n)
Specifies the number, n, of trace buffers to allocate for ICSF tracing.
Specify n as a decimal value from 100 through 10000, inclusive. The
default is 1000.

You should set this parameter to the maximum in case you ever need this
trace material.

Chapter 2. Installation, Initialization, and Customization 27

UDX(UDX-id,service-number,load-module-name,’comment_text’,FAIL(fail-
option))

ICSF allows the development of User Defined Extensions for the PCI
Cryptographic Coprocessor. The UDX-id is supplied to the installation when
the UDX is developed. The service-number specifies a number that
identifies the service to ICSF. The valid service numbers are 1 to 32767,
inclusive. This set of service numbers is valid for both installation-defined
services and UDX services. The service number of a UDX service must not
be the same as the service number of an installation-defined service. The
load-module-name is the name of the module that contains this service.
During ICSF startup, ICSF loads this module and binds it to the
service-number that was specified. A comment may be specified. The
positional parameter is required. The comment consists of up to 40 EBCDIC
characters, and may include imbedded blank characters. The comment text
is enclosed by single quotes. If no comment text is desired, two contiguous
single quotes should be specified.

The fail-option is YES or NO, indicating the action ICSF should take if
loading the service ends abnormally. If the service itself ends abnormally,
ICSF does not end, but takes a system dump instead.

YES Specifies that ICSF ends abnormally if your service cannot be
loaded.

NO Specifies that ICSF continues to start if your service cannot be
loaded.

USERPARM(value)
Specifies an 8-byte field for installation use. The Installation Option Display
panel displays this value, which is stored in the Cryptographic
Communication Vector Table (CCVT) in the CCVT_USERPARM field. An
application program or installation exit can examine this field and use it to
set system environment information. The default is eight blanks.

WAITLIST(data_set_name)
This optional parameter can be used if you have ICSF with CICS installed.
Specifies that a customer modifiable data set will be used to determine
names of the services to be placed into the ICSF CICS Wait List. A sample
data set is provided by ICSF via member CSFWTL00 of SYS1.SAMPLIB.
The sample data set contains the same entries as the default ICSF CICS
Wait List. For example, the data set contains the names of all ICSF callable
services which, by default, will be driven through the CICS TRUE. The
WAITLIST option should be added to the Installation Options data set under
the following conditions. For additional information on the CICS Attachment
Facility, see Appendix B, “Installing the CICS-ICSF Attachment Facility” on
page 171.

v Non-CICS customers will not specify a WAITLIST keyword.

v CICS customers who want to use the default CICS Wait List shipped with
OS/390 V2 R10 ICSF will not specify a WAITLIST keyword. You must
ensure, however, that any existing CICS applications which invoke any of
the ICSF services in the Wait List are re-linked to pick up the new
version of the stub.

v CICS customers who do not want to make use of CICS TRUE must
either not enable the TRUE or specify a WAITLIST keyword and point to
an empty wait list data set or you can specify WAITLIST(DUMMY) in the
Installation Options data set.

28 z/OS V1R3.0 ICSF System Programmer’s Guide

v CICS customers who wish to modify the ICSF default CICS Wait List
should modify the sample Wait List data set supplied in member
CSFWTL00 of SYS1.SAMPLIB. The WAITLIST keyword in the
Installation Options Data Set should be set to point to this data set. Any
existing CICS applications which invoke any of the ICSF services in the
Wait List should be re-linked to pick up the new version of the stub.

Improving CKDS Performance
To improve the performance of CKDS operations during KGUP runs, use the Batch
Local Shared Resource (BLSR) with Deferred Write for all KGUP runs. See MVS
Batch Local Shared Resources for more information.

Creating ICSF Exits and Generic Services
You need not code any exits or generic services before using ICSF productively.

Developing callable service exits and generic services requires skill in assembler
programming in a cross memory environment. To help with testing, the system
programmer might want to use the WTO macro with the LINKAGE=BRANCH
keyword to issue console messages while in cross-memory mode. (See “Callable
Service Exits” on page 79 for more information.)

Chapter 2. Installation, Initialization, and Customization 29

30 z/OS V1R3.0 ICSF System Programmer’s Guide

Chapter 3. Migration from CUSP/PCF to z/OS ICSF

If your installation uses the cryptographic products, Cryptographic Unit Support
Program (CUSP) or Programmed Cryptographic Facility (PCF), ICSF helps you
migrate CUSP/PCF applications to ICSF. You can run CUSP/PCF applications on
ICSF to gain the enhanced performance and availability of ICSF and to test ICSF.
Eventually, you should convert these applications to use ICSF services, rather than
the CUSP/PCF macros.

During migration, you can run CUSP/PCF applications on ICSF because ICSF
continues to support the CUSP/PCF macros (GENKEY, RETKEY, EMK, and
CIPHER). If GENKEY or RETKEY macro exits exist, you should reevaluate their
applicability to ICSF. If an exit performs a necessary function, you need to rewrite
the exit for ICSF. Exits exist for the compatibility services on ICSF.

If a CUSP/PCF application uses a key in the CUSP/PCF cryptographic key data
set, you must convert the key to an ICSF cryptographic key data set before you run
the CUSP/PCF application on ICSF. ICSF provides a program to make this
conversion.

Running CUSP/PCF and z/OS ICSF on the Same System
You can run CUSP/PCF and ICSF simultaneously on the same z/OS system or
separately in three different modes. You can run ICSF in compatibility, coexistence,
or noncompatibility mode.

In compatibility mode, you can run either CUSP/PCF or ICSF, but you cannot run
them simultaneously on the same z/OS system. You can continue to run
CUSP/PCF applications on CUSP/PCF or you can run CUSP/PCF applications on
ICSF. ICSF supports the CUSP/PCF macros that the CUSP/PCF applications call.
However, you cannot run the CUSP/PCF key generator utility program (KGUP) on
ICSF. You do not have to reassemble CUSP/PCF applications to run the
applications on ICSF.

In coexistence mode, you can run CUSP/PCF and ICSF simultaneously on the
same z/OS system. You can continue to run a CUSP/PCF application on
CUSP/PCF or you can reassemble the CUSP/PCF application to run on ICSF. In
this mode, ICSF supports the CUSP/PCF macros when a reassembled CUSP/PCF
application calls these macros.

In noncompatibility mode, you can run CUSP/PCF and ICSF simultaneously and
independently on the same z/OS system. You can run CUSP/PCF applications on
CUSP/PCF and ICSF applications on ICSF. You cannot run CUSP/PCF applications
on ICSF, because ICSF does not support the CUSP/PCF macros in this mode.

You can run CUSP/PCF simultaneously and independently in coexistence and
noncompatibility mode. Therefore, in these modes, you can run CUSP/PCF KGUP
on CUSP/PCF while running ICSF. The CUSP/PCF KGUP updates keys on a
CUSP/PCF CKDS.

The ICSF installation option COMPAT(YES, COEXIST or NO) allows you to specify
which mode you want ICSF to run in. You specify COMPAT(YES) for compatibility
mode, COMPAT(COEXIST) for coexistence mode, and COMPAT(NO) for
noncompatibility mode. See “Create the Installation Options Data Set” on page 12

© Copyright IBM Corp. 1997, 2002 31

for information about creating the installation options data set and “Changing
Parameters in the Installation Options Data Set” on page 20 for details about these
options.

Running in Compatibility Mode
In compatibility mode, you can run a CUSP/PCF application on ICSF without
reassembling the application. A CUSP/PCF application running on ICSF can still
use CUSP/PCF macros, because ICSF supports these macros. The CUSP/PCF
application gains the enhanced performance, reliability, and availability of ICSF.

You cannot run CUSP/PCF and ICSF simultaneously on the same z/OS system in
compatibility mode. If you start CUSP/PCF, you must stop CUSP/PCF before you
can start ICSF. If you start ICSF, you must stop ICSF before you can start
CUSP/PCF.

A CUSP/PCF application may have used keys on the CUSP/PCF cryptographic key
data set (CKDS). When you run the application on ICSF, these keys must be in the
ICSF CKDS. The format of a key entry on the CUSP/PCF CKDS differs from the
format of a key entry on the ICSF CKDS. Therefore, you need to run a conversion
program to convert the CUSP/PCF CKDS entries and place the entries in the ICSF
CKDS. See “Converting a CUSP/PCF CKDS to ICSF Format” on page 35 for a
description of how to convert a CUSP/PCF CKDS.

For encryption, ICSF supports the Data Encryption Standard (DES), the
Commercial Data Masking Facility (CDMF), or both. Wherever possible, the key
token is marked to signal which algorithm to use. For the CUSP CIPHER service,
the key consists of only the key value and, therefore, cannot be marked. An
initialization option (COMPENC) indicates a default encryption mode (CDMF or
DES) for the CUSP CIPHER service.

PCF and CUSP macros receive identical error return codes if they run on ICSF or
PCF/CUSP, with one exception. If a key is installed on the ICSF CKDS with the
correct label but with the wrong key type, an attempt to use that key by RETKEY or
GENKEY results in a return code of 8 from PCF/CUSP. This indicates that the key
was not of the correct type. ICSF issues return code 12, indicating that it could not
find the key. Ensure that PCF/CUSP LOCAL or CROSS 1 keys are installed in the
ICSF CKDS as EXPORTER keys. Also, ensure that REMOTE and CROSS 2 keys
are installed in the ICSF CKDS as IMPORTER keys.

In compatibility mode, the safest method for changing the master key is to re-IPL
the system. To change the master key in compatibility mode, see “Changing the
Master Key in Compatibility or Coexistence Mode” on page 33.

Note: To use AMS REPRO encryption, you need to run ICSF in compatibility mode.

Running in Coexistence Mode
In coexistence mode, you can run ICSF and CUSP/PCF simultaneously on the
same OS/390 system and run a CUSP/PCF application on CUSP/PCF or on ICSF.
A CUSP/PCF application running on ICSF gains the enhanced performance,
reliability, and availability of ICSF.

A CUSP/PCF application running on ICSF can still use CUSP/PCF macros,
because ICSF supports these macros. ICSF ships changed CUSP/PCF macros in

32 z/OS V1R3.0 ICSF System Programmer’s Guide

SAMPLIB that run only on ICSF. Because these changed CUSP/PCF macros
already exist unchanged on CUSP/PCF, the changed CUSP/PCF macros shipped
with ICSF are named differently.

On ICSF, in SAMPLIB:
v The changed CUSP/PCF EMK macro is named CSFEMK.
v The changed CUSP/PCF CIPHER macro is named CSFCIPH.
v The changed CUSP/PCF RETKEY macro is named CSFRKY.
v The changed CUSP/PCF GENKEY macro is named CSFGKY.

You can rename these macros to the CUSP/PCF names when you want to run a
CUSP/PCF application on ICSF.

To run a CUSP/PCF application on ICSF, you must:

v Rename the changed CUSP/PCF macro shipped in ICSF SAMPLIB to the
appropriate CUSP/PCF name.

v Place the macro in the appropriate macro library.

v Reassemble the CUSP/PCF application against the changed CUSP/PCF macro.

Then the application can run only on ICSF. To run a CUSP/PCF application on
CUSP/PCF, just run the application without reassembling the application.

During migration, you can start ICSF and start CUSP/PCF so that both products are
running simultaneously. If you want to run a CUSP/PCF application using the
CUSP/PCF macros on CUSP/PCF, do not reassemble the application. If you want
to run a CUSP/PCF application using the changed CUSP/PCF macros on ICSF,
reassemble the application against the changed macros. Coexistence mode
enables you to run the products simultaneously and choose whether to run a
CUSP/PCF application on CUSP/PCF or ICSF.

A CUSP/PCF application can use keys on the CUSP/PCF CKDS. When you run the
application on ICSF, those keys must be in the ICSF CKDS. The format of a key
entry on the CUSP/PCF CKDS differs from the format of a key entry on the ICSF
CKDS. Therefore, you need to run a conversion program to convert the CUSP/PCF
CKDS entries and place the entries in the ICSF CKDS. See “Converting a
CUSP/PCF CKDS to ICSF Format” on page 35 for a description of how to convert a
CUSP/PCF CKDS.

In coexistence mode, the safest method for changing the master key is to re-IPL the
system. See “Changing the Master Key in Compatibility or Coexistence Mode” for a
description of the process used to change the master key in coexistence mode.

Changing the Master Key in Compatibility or Coexistence Mode
In compatibility and coexistence modes, the safest way to activate a master key
after changing it is to re-IPL the system. This process is different from the usual
process for entering and activating a master key. For information about changing
the master key, see z/OS ICSF Administrator’s Guide.

A re-IPL ensures that a program does not access a cryptographic service with a key
that is encrypted under a different master key. If a program is using an operational
key, the program either re-creates the key or imports the key again.

In compatibility or coexistence mode, the ICSF administrator can use the ICSF
panels to enter the key value into the new master key register. However, the master
key cannot be activated using the panels in compatibility or coexistence mode. The

Chapter 3. Migration from CUSP/PCF to z/OS ICSF 33

value entered remains in the new master key register until you re-IPL the system.
(In noncompatibility mode, the ICSF administrator can use the ICSF panels to enter
the key value into the new master key register and to activate the master key.)

If the new master key is different than the current master key, the ICSF
administrator must reencipher the CKDS under this new master key. To do this,
choose the change option on the master key management panel. This reenciphers
a CKDS under the master key in the new master key register. Reencipher all the
disk copies of the CKDSs, and leave the ICSF panels without changing the master
key.

Then re-IPL the system and restart ICSF. In the installation options data set, the
CKDSN installation option must specify a disk copy of the CKDS that is
reenciphered under the new master key. When ICSF starts again, it detects that the
current master key is not the one that enciphered the CKDS that is specified in the
installation options data set. ICSF detects that the CKDS is enciphered under the
new master key and makes that master key active.

If your installation requires 24-hour availability and it is not possible to re-IPL the
system, an alternative method is to stop all cryptographic applications, especially
those using CUSP or PCF macros. This helps eliminate inadvertent use of
operational keys that are encrypted under the old master key. After you restart CSF,
applications using an operational key can either re-create or reimport the key.

Running in Noncompatibility Mode
In noncompatibility mode, CUSP/PCF and ICSF can run simultaneously and
independently. You can run both ICSF and CUSP/PCF at the same time. Just start
one and then the other. Both ICSF and CUSP/PCF run completely separate from
each other. Each has its own applications and each uses its own services and
CKDS.

You cannot run a CUSP/PCF application on ICSF, even if you reassemble it. If you
run an application on ICSF that calls a CUSP/PCF macro, the application ends
abnormally, because ICSF does not support the CUSP/PCF macros in
noncompatibility mode.

Because each product runs separately, neither product loses any function in
exchange for compatibility. When ICSF is in compatibility or coexistence mode, you
can no longer change the master key dynamically. In noncompatibility mode, this
function is still possible. Therefore, except for when your installation is migrating to
ICSF, you probably want to run ICSF in noncompatibility mode.

Note: When you initialize ICSF for the first time, noncompatibility mode must be
active.

Specifying Compatibility Modes during Migration
The process and duration to migrate from CUSP/PCF to ICSF depend on your
installation. You can use different modes in different stages of migration. To change
modes, change the COMPAT option in the installation options data set and restart
ICSF. When you complete migration to ICSF, you can run in noncompatibility mode
to use the full function of ICSF.

When you first install an ICSF system, you can continue to run CUSP/PCF for
production and just test ICSF. Because you are running the products separately but
simultaneously on the same z/OS system, you can run in noncompatibility or

34 z/OS V1R3.0 ICSF System Programmer’s Guide

coexistence mode. To run in compatibility mode, you need more than one z/OS
system. You can run the test applications on ICSF on one z/OS system while you
run your production on CUSP/PCF on another z/OS system.

When you begin testing ICSF, you can run existing applications in either
compatibility mode or coexistence mode to test the CUSP/PCF macros on ICSF.
After you run the test applications, you may want to bring up production using
CUSP/PCF applications on ICSF. When you bring over CUSP/PCF applications to
ICSF, you can run in coexistence mode. In this mode, you can run an application on
CUSP/PCF and then reassemble the application to run the application on ICSF.

While, or after, you bring CUSP/PCF applications into production on ICSF, you can
run test applications that call ICSF services. You can then convert the applications
that call CUSP/PCF macros to applications that call the ICSF services. The ICSF
services provide enhanced key separation, performance, and function. After you
convert all your CUSP/PCF applications to ICSF applications, you can activate
noncompatibility mode and have the full function of ICSF.

Converting a CUSP/PCF CKDS to ICSF Format
During migration, you may need to convert a CUSP/PCF CKDS into ICSF CKDS
format if:

v CUSP/PCF applications running on ICSF use keys stored in a CUSP/PCF CKDS.

v Your installation uses the CUSP/PCF key generator utility program to create keys
and uses ICSF for other cryptographic operations. To use the keys in ICSF
applications, you must convert the CUSP/PCF CKDS.

ICSF provides a CUSP/PCF conversion program, CSFCONV, that converts a
CUSP/PCF CKDS into an ICSF CKDS. The conversion program runs with certain
defaults. The program converts all the entries in a CUSP/PCF CKDS and converts
the CUSP/PCF key types into certain corresponding ICSF key types. You can use
the conversion program override file to instruct the conversion program not to
convert certain entries. You can also tell the conversion program to convert a
CUSP/PCF key type into a different ICSF key type than the default.

The following sections describe how:
v The conversion program runs with certain defaults
v To use the override file to make it run differently
v To run the conversion program

How the CUSP/PCF Conversion Program Runs
You can run the CUSP/PCF conversion program only after you initialize the master
key and CKDS for ICSF. To run the conversion program, the CKDS you specify at
ICSF startup must be initialized to contain NOCV-enablement keys. For information
about master key and CKDS initialization and NOCV-enablement keys, see z/OS
ICSF Administrator’s Guide.

The CUSP/PCF conversion program determines whether the CKDS you are
converting is a CUSP or PCF CKDS. When the conversion program processes a
PCF CKDS, the program duplicates the single length key values to create double
length keys.

The conversion program merges the CUSP/PCF CKDS with an input ICSF CKDS.
The input ICSF CKDS is an existing disk copy of an ICSF CKDS. The input ICSF
CKDS must contain a header record and include system keys entries, but may or

Chapter 3. Migration from CUSP/PCF to z/OS ICSF 35

may not contain other key entries. ICSF uses NOCV enablement keys to create
keys to communicate with systems that do not use control vectors. If the ICSF
CKDS resulting from the conversion contains converted importer or exporter
key-encrypting keys, the input ICSF CKDS must contain NOCV enablement keys.
For information about initializing an ICSF CKDS, see z/OS ICSF Administrator’s
Guide.

The CUSP/PCF conversion program places the input ICSF CKDS entries and the
converted CUSP/PCF entries into an output CKDS. You must create an empty
VSAM data set to be the output CKDS before running the conversion program. See
“Create the CKDS” on page 8 for information about creating the data set.

The CUSP/PCF conversion program converts all the entries in a CUSP/PCF CKDS.
When you run the CUSP/PCF conversion program, the program does the following
conversions of CUSP/PCF key types into ICSF key types:

v Converts each CUSP/PCF local key entry into an ICSF NOCV exporter
key-encrypting key entry.

v Converts each CUSP/PCF remote key entry into an ICSF NOCV importer
key-encrypting key entry.

v Converts each CUSP/PCF cross key entry into two ICSF key entries: an NOCV
exporter key-encrypting key and an NOCV importer key-encrypting key.

You use the override file to not convert all the entries in a CUSP/PCF CKDS or to
convert a CUSP/PCF key into a different key type than the default key type.

When the CUSP/PCF conversion program converts a CUSP/PCF entry, the
program places any installation data from the installation data field of the
CUSP/PCF entry into the ICSF entry. You can use the override file to place different
installation data into the ICSF entry.

Note: ICSF copies any installation data in the input CSF CKDS header record into
the output ICSF CKDS header record.

As the conversion program reads the CUSP/PCF CKDS, the input ICSF CKDS, and
the override file, the program places key entries into a virtual image of the output
ICSF CKDS. When the virtual image CKDS is complete, the conversion program
reenciphers the key values of the CUSP/PCF entries from under the CUSP/PCF
master key to under the ICSF master key. The conversion program places the
reenciphered entries into the actual output CKDS.

As the conversion program creates the virtual image ICSF CKDS, the conversion
program takes information from the CUSP/PCF entry and possibly the override file.
For each CUSP/PCF entry, the conversion program checks if its key label exists in
the override file. If the label does exist in the override file, the conversion program
takes the action that is specified in the override file. The program either converts or
bypasses the entry. If the key label does not exist in the override file, ICSF converts
the entry.

The conversion program compares the converted CUSP/PCF entries by label and
type with the ICSF entries that already exist in the input ICSF CKDS. If there is a
match, the conversion program replaces the key value from the converted entry of
the CUSP/PCF source into the virtual image CKDS. If there is not a match, the
conversion program converts each CUSP/PCF entry after checking the override file.
If the label matches and the type does not, the conversion program checks to see if
the type requires a unique label. If a unique label is not required, the conversion

36 z/OS V1R3.0 ICSF System Programmer’s Guide

program converts the CUSP/PCF entry after checking the override file. If a unique
label is required, the conversion program does not convert the CUSP/PCF entry
and issues an error message. If the record type is DATA, DATAXLAT, MAC,
MACVER, or NULL the CKDS record requires a unique label. The CKDS record
also requires a unique label if the record has ever been updated by the dynamic
CKDS update callable services. The conversion program also places all the input
ICSF CKDS entries into the virtual image CKDS.

Calling Installation Exits During Conversion
You can call two installation exits during conversion program processing: the
conversion program exit (CSFCONVX) and the single-record, read-write exit
(CSFSRRW). The conversion program calls the exit at three different times: before,
during, and after conversion program processing. See Chapter 7, “Installation Exits”
on page 75 for a description of the conversion program and single-record,
read-write exit control blocks.

The conversion program calls the CSFCONVX exit after you submit the conversion
program job, but before the program actually begins processing. At this point, you
can use the exit to change the output ICSF CKDS header record installation data
field.

The conversion program also calls the CSFCONVX exit during processing as the
conversion program completes the virtual image ICSF CKDS, but before the
conversion program reenciphers the key values. The conversion program calls the
exit as it writes each record to the virtual image ICSF CKDS. At this point, you can
use the exit to specify that the conversion program not place an entry into the
output ICSF CKDS.

The conversion program also calls the CSFCONVX exit after the conversion
program completes processing. At this point, you can use the exit to change the
output ICSF CKDS header record installation data field.

As the conversion program reads the records from the virtual image ICSF CKDS to
the actual output ICSF CKDS it calls the single-record, read-write exit. The
conversion program calls the single-record, read-write exit as it writes each record
to the output ICSF CKDS. You can use this exit to specify that the conversion
program not place an entry into the output ICSF CKDS.

The conversion program writes every entry from the CUSP/PCF CKDS and input
ICSF CKDS into the output ICSF CKDS unless an override record or installation
exit indicates that the conversion program should bypass the entry from the
CUSP/PCF CKDS.

Using the Conversion Program Override File
The conversion program converts all entries in a CUSP/PCF CKDS into ICSF
entries. The conversion program also converts each type of CUSP/PCF key into a
specific ICSF key type. If you want the conversion program to bypass certain key
entries or convert a specific key or key type differently than it does by default, use
the override file.

By specifying override records, you can have the conversion program do any of the
following:
v Bypass conversion of key entries
v Include information in key entries
v Convert key types differently than it does by default

Chapter 3. Migration from CUSP/PCF to z/OS ICSF 37

These actions can relate to entries explicitly identified with a key label or entries
that are identified globally.

You specify information in certain fields in an override record and leave other fields
blank, depending on the action you want the conversion program to take. You can
specify a global record affecting more than one CUSP/PCF CKDS entry or a record
that affects only one CUSP/PCF CKDS entry.

All the override data set records should be in ascending sequence by key label and
old key type. If you use global entries, they must be the initial entries in the override
record. Table 2 shows the syntax of a record in the override file.

Note: All the fields should contain character values and be left-justified.

If you specify a key label in an override record, the conversion program processes
the key entry identified by that key label. If you do not specify a key label in an
override record, you are using a global override record. The conversion program
processes all the key labels that pertain to the information specified by the override
file.

You can use a global override record to affect all the entries in a CKDS and then
use override records to explicitly affect entries you did not want to have that global
override record affect.

Table 2. Format of Records in the Override File

Column Length Description

1 8 Key Label

The key label of the CUSP/PCF entry you want to convert

The field can have the following values:
v Blanks
v A key label existing in the CUSP/PCF CKDS that you

want to convert

9 1 This field must be blank.

10 8 Old Key Type

The key type of the key entry you want to convert in the
CUSP/PCF CKDS.

The field can have the following values:
v Blanks
v LOCAL
v REMOTE

18 1 This field must be blank.

38 z/OS V1R3.0 ICSF System Programmer’s Guide

Table 2. Format of Records in the Override File (continued)

Column Length Description

19 8 New Key Type

The key type that you want the converted key entry to be in
the ICSF CKDS. The master key variant for the key type
enciphers the key in the ICSF CKDS entry that the
conversion program creates.

The field can have the following values:
v Blanks
v OPINENC
v EXPORTER
v IPINENC
v IMPORTER

27 1 This field must be blank.

28 8 Ignored

In ICSF/MVS Version 1 Release 1, this field contained the
key qualifier. The CKDS for ICSF/MVS Version 1 Release 2
or above does not support key qualifiers. If your installation
has a CUSP/PCF conversion program override file created
with ICSF/MVS Version 1 Release 1, you can still use it with
z/OS ICSF. Any key qualifier entries are ignored.

36 1 This field must be blank.

37 1 Bypass Flag

Used to indicate that an input CKDS entry is not to be
included in the new ICSF CKDS. If you set this field to Y,
the conversion program does not convert the entry.

The field can have the following values:
v Blank (same as N)
v N
v Y

38 1 This field must be blank.

39 52 Installation Data

Any additional information your installation records about a
key. The information appears in the installation data field of
the new ICSF CKDS.

The field can contain any value.

Bypassing Conversion of Entries
Using an override record, you can bypass a CUSP/PCF entry so it is not converted
and placed in the ICSF CKDS. You can use a global override record to bypass all
the entries in the data set and then use explicit override records to convert certain
entries. You can also convert most of a CUSP/PCF CKDS and just bypass certain
entries using explicit override records.

Following are some examples of override records for bypassing conversion.

Example 1: This example shows an override record specifying that the conversion
program not convert any CUSP/PCF CKDS entry with a certain key label.

EXTOATM3 Y

Chapter 3. Migration from CUSP/PCF to z/OS ICSF 39

The conversion program bypasses any CUSP/PCF CKDS entry with the label
EXTOATM3.

Example 2: This example shows an override record specifying that the conversion
program not convert any CUSP/PCF CKDS entry with a certain key label and key
type.

CRLABEL4 REMOTE Y

The conversion program bypasses any CUSP/PCF CKDS entry with the label
CRLABEL4 and key type REMOTE.

Example 3: This example shows a global override record specifying that the
conversion program bypass all the entries in a CUSP/PCF CKDS.

Y

The conversion program does not convert any of the entries in the CUSP/PCF
CKDS.

After you specify this global override record, you can use explicit override records to
convert certain entries in the CUSP/PCF CKDS. For example, you can use an
override record like the following one to explicitly convert CUSP/PCF entries with a
certain label.

ATM03 N

In this example, the conversion program converts any CUSP/PCF CKDS entry with
the label ATM03.

Example 4: This example shows a global override record specifying that the
conversion program bypass all the entries with a certain CUSP/PCF key type in a
CUSP/PCF CKDS.

REMOTE Y

The conversion program does not convert any of the entries with a key type of
REMOTE in the CUSP/PCF CKDS. After you specify this global override record,
you can use explicit override records to convert specific entries with a key type of
REMOTE in the CUSP/PCF CKDS.

Including Information in a Key Entry

Programming Interface information

An ICSF key entry contains an installation data field that an installation can use to
further identify a key. The installation data field contains any information that an
installation wants to supply about a key.

CUSP/PCF records contain an installation data field. The conversion program
places the information in the field into the installation data field of the converted
entry in the output ICSF CKDS. You can use an override record to specify
installation data information for the converted entry in the output ICSF CKDS. The
installation data information supplied in the override record overrides any
information from the CUSP/PCF installation data field. If you do not use an override
record, the conversion program places any installation data from the CUSP/PCF
entry into the leftmost 8 bytes of the ICSF entry.

Following are examples of override records for including key information.

40 z/OS V1R3.0 ICSF System Programmer’s Guide

Example 1: This example shows an override record providing the conversion
program with installation data information to place in the ICSF CKDS for any
converted CUSP/PCF entry with a certain key label.

ATMKEY12 CONVERTED FROM CUSP1.CKDS 10/01/98

When the conversion program converts an entry that is labeled ATMKEY12, it
places CONVERTED FROM CUSP1.CKDS 10/01/98 in the installation data field for the
converted entry.

Example 2: This example shows an override record providing the conversion
program with installation data information to place in the ICSF CKDS for any
converted CUSP/PCF entry with a certain key label and key type.

LOCAL890 LOCAL CONVERTED FROM PCF12.CKDS

When the conversion program converts an entry that is labeled LOCAL890 with a
key type of LOCAL, it places CONVERTED FROM PCF12.CKDS in the installation data
field for the converted entry.

Example 3: This example shows a global override record that provides the
conversion program with installation data information to place in the ICSF CKDS for
all converted entries.

CONVERTED FROM PCF10.CKDS

When the conversion program converts the CUSP/PCF CKDS, it places CONVERTED
FROM PCF10.CKDS in the installation data field. The information is placed into every
converted key entry. After you specify this global override record, you can use
explicit override records to provide different information for specific entries in the
CUSP/PCF CKDS.

End of Programming Interface information

Converting Key Types
By default, the conversion program converts CUSP/PCF keys into certain ICSF key
types. You can use the override file to override the defaults. For example:

v Instead of automatically converting a CUSP/PCF local key into a NOCV exporter
key-encrypting key, you can convert the local key into an output PIN-encrypting
key.

v Instead of automatically converting a CUSP/PCF remote key into a NOCV
importer key-encrypting key, you can convert the remote key into an input
PIN-encrypting key.

v Instead of automatically converting a CUSP/PCF cross key into a NOCV exporter
key-encrypting key and a NOCV importer key-encrypting key, you can convert
the cross key into an output PIN-encrypting key and an input PIN-encrypting key.

You can use a global override record to convert all keys of a certain type into a type
other than the conversion program default key type. Then using an explicit override
record, you can specify that the conversion program convert a specific record into a
the default key type. For example, you can use a global override record to convert
all remote keys into input PIN-encrypting keys, and then use an override record to
convert specific remote entries into importer key-encrypting keys.

Following are some examples of override records for key type conversion.

Chapter 3. Migration from CUSP/PCF to z/OS ICSF 41

Example 1: This example shows an override record specifying that the conversion
program convert a local key to an output PIN-encrypting key for any CUSP/PCF
CKDS entry with a certain key label. The override record also provides the
conversion program with installation data.

CRLABEL1 LOCAL OPINENC OPINENC FOR ATM123

When the conversion program converts any CUSP/PCF entry labeled CRLABEL1
with a key type of local, it converts the key from a local key type to an output
PIN-encrypting key type. The program also places OPINENC FOR ATM123 in the
installation data field.

If you did not specify this override record, the conversion program would
automatically convert the entry from a local key type to an exporter key-encrypting
key type.

Example 2: This example shows an override record specifying that the conversion
program convert a remote key to an input PIN-encrypting key for any CUSP/PCF
CKDS entry with a certain key label. The override record also provides the
conversion program with installation data.

CRLABEL2 REMOTE IPINENC IPINENC FOR ATM123

When the conversion program converts any CUSP/PCF CKDS entry labeled
CRLABEL2 with a key type of remote, it converts the key from a remote key type to
an input PIN-encrypting key type. The program also places IPINENC FOR ATM123 in
the installation data field.

If you did not specify this override record, the conversion program would
automatically convert the entry from a remote key type to an importer
key-encrypting key type.

Example 3: This example shows an override record specifying that the conversion
program convert a local key to an exporter key-encrypting key for any CUSP/PCF
CKDS entry with a certain key label. The override record also provides the
conversion program with installation data.

LOLABEL1 LOCAL EXPORTER EXPORTER CONVERTED FROM CUSP12.CKDS

The conversion program automatically converts a local key to an exporter
key-encrypting key. You can use this override record if you previously submitted an
override record that had the conversion program convert all the local key types to
output PIN-encrypting keys. You can use this override record to explicitly convert
the key entry that is labeled LOLABEL1 from a local key type to an exporter
key-encrypting key type.

With the example override record, when the conversion program converts any
CUSP/PCF entry labelled LOLABEL1 with a key type of local, it converts the key
from a local key type to an exporter key-encrypting key type. The program also
places EXPORTER CONVERTED FROM CUSP12.CKDS in the installation data field.

Example 4: This example shows an override record specifying that the conversion
program convert a remote key to an importer key-encrypting key for any CUSP/PCF
CKDS entry with a certain key label. The override record also provides the
conversion program with installation data.

RECKDS12 REMOTE IMPORTER IMPORTER CONVERTED FROM CUSP12.CKDS

The conversion program automatically converts remote keys to importer
key-encrypting keys. You can use this override record if you supplied an override

42 z/OS V1R3.0 ICSF System Programmer’s Guide

record to convert all the remote key types to input key-encrypting keys. Use this
override record to explicitly convert key entries labeled RECKDS12 from remote key
types to importer key-encrypting key types.

With the example override record, when the conversion program converts any
CUSP/PCF entry labeled RECKDS12 with a key type of remote, it converts the key
from a remote key type to an importer key-encrypting key type. The program also
places IMPORTER CONVERTED FROM CUSP12.CKDS in the installation data field.

Example 5: This example shows a global override record specifying that the
conversion program convert a local key to an output PIN-encrypting key for any
CUSP/PCF CKDS entry with a key type of local. The override record also provides
the conversion program with installation data.

LOCAL OPINENC OPINENC FROM CUSP.PIN12.CKDS

When the conversion program converts any CUSP/PCF entry with a key type of
local, the program converts the key from a local key type to an output
PIN-encrypting key type. The program also places OPINENC FROM CUSP.PIN12.CKDS
in the installation data field. After you specify this global override record, you can
use explicit override records to place different installation data in the ICSF CKDS
entries.

Example 6: This example shows a global override record specifying that the
conversion program convert a remote key to an input PIN-encrypting key for any
CUSP/PCF CKDS entry with a key type of remote. The override record also
provides the conversion program with installation data.

REMOTE IPINENC IPINENC FROM CUSP.PIN12.CKDS

When the conversion program converts any CUSP/PCF entry with a key type of
remote, it converts the key from a remote key type to an input PIN-encrypting key
type. The program also places IPINENC FROM CUSP.PIN12.CKDS in the installation
data field for the entry in the ICSF CKDS. After you specify this global override
record, you can use explicit override records to place different installation data
information in the ICSF CKDS entries.

Running the Conversion Program
You can run the conversion program only after you initialize the master key and
CKDS for ICSF. The CKDS you specify at ICSF startup must be initialized to
contain NOCV-enablement keys. For information about defining keys on ICSF, see
z/OS ICSF Administrator’s Guide.

If the CUSP/PCF master key and the ICSF master key are not the same, you must
define the CUSP/PCF master key in the input ICSF CKDS. Define the CUSP/PCF
master key as an importer key-encrypting key in the input ICSF CKDS. You define
the key by entering the key through the key entry hardware, or by importing the key
using the ICSF key generator utility program. For information about direct key entry
through the key entry hardware and the key generator utility program, see z/OS
ICSF Administrator’s Guide.

Note: Be careful defining the CUSP/PCF master key in the input ICSF CKDS,
because there is no programmed way to determine its validity.

You run the conversion program by submitting a batch job. On the EXEC statement,
specify PGM=CSFCONV. If the CUSP/PCF master key and ICSF master key are
not the same in the PARM= field on the EXEC statement, specify the label of the

Chapter 3. Migration from CUSP/PCF to z/OS ICSF 43

CUSP/PCF master key entry in the input ICSF CKDS. If you do not specify the
parameter, the conversion program assumes that the CUSP/PCF master key and
ICSF master key are the same.

The following example is a JCL that runs the conversion program:
//CKDSCONV EXEC PGM=CSFCONV,PARM=’CUSPMKEY’
//CSFVSRC DD DSN=PROD.CUSP.CKDS,DISP=SHR
//CSFVINP DD DSN=TEST.CSF.CKDS,DISP=SHR
//CSFVOVR DD DSN=OVERRIDE.DATA,DISP=OLD
//CSFVNEW DD DSN=MERGED.CSF.CKDS,DISP=OLD
//CSFVRPT DD SYSOUT=A
//

In the example, CUSPMKEY is the label of the entry in the input ICSF CKDS for
the CUSP/PCF master key in importer key-encrypting key form. All the data sets
necessary to run the conversion program are specified using DD statements.

The conversion program uses the following data sets:

CSFVSRC
The CUSP/PCF CKDS containing entries that you want to convert into ICSF
format and place in the output ICSF CKDS. This is the source CKDS for the
conversion. For a description of the CUSP/PCF CKDS record format, see
OS/VS1 and OS/VS2 MVS Cryptographic Unit Support: Installation Manual
(support for CUSP has been withdrawn, but this book is available) or
OS/VS1 and OS/VS2 MVS Programmed Cryptographic Facility.

CSFVINP
A disk copy of the input ICSF CKDS. The input CKDS should already
contain the header record and the ICSF system keys and can contain other
ICSF key entries. If the CKDS does not contain NOCV-enablement keys,
the output ICSF CKDS will not contain NOCV-enablement keys. For more
information about NOCV-enablement keys, see z/OS ICSF Administrator’s
Guide.

Note: The input ICSF CKDS does not have to be the CKDS you specify
when you start ICSF.

CSFVOVR
The override file with information specifying how you want the conversion
program to process CUSP/PCF key entries. If no override data is required,
this data set is optional. However, you must code a dummy DD statement
in the JCL.

The following JCL is an example of a dummy DD statement for an override
file:

//CSFVOVR DD DUMMY,DCB=(RECFM=FB,LRECL=90,BLKSIZE=3600)

See “Using the Conversion Program Override File” on page 37 for a
description of when and how to use the override file.

CSFVNEW
An empty disk copy of an ICSF CKDS. This is the ICSF CKDS into which
the conversion program places key entries. The conversion program places
key entries from the input ICSF CKDS and the CUSP/PCF CKDS into the
output ICSF CKDS. The data set must be defined and empty before you
run the conversion program.

CSFVRPT
The activity report that the conversion program creates. The report

44 z/OS V1R3.0 ICSF System Programmer’s Guide

describes any override records and gives a summary of CKDS entries that
were affected by the conversion program.

Attention: If a conversion program run ends prematurely, the results of the job
are unpredictable. You should not read a CKDS involved in the conversion into
storage for use. For a description of the conversion program return codes, see the
explanation of message CSFV0026 in z/OS ICSF Messages.

When you run the conversion program, the program produces information about the
conversion in an activity report. The activity report lists each override entry, the
action each override entry applies to the input CUSP/PCF CKDS, and any error
messages. The activity report also lists the data sets that were used in the
conversion and a summary of processing. The summary of processing contains
totals that apply to CKDS entries in the conversion program job.

Figure 2 is an example of an activity report with five explicit override records and no
global override records.

In the report, the first override record specifies that when the conversion program
converts a CUSP/PCF entry labeled CRLABEL3 with a key type of local, the
program should convert the entry into an output PIN-encrypting key. The conversion

CRYPTOGRAPHIC CONVERSION ACTIVITY REPORT DATE: 2001/06/01 (YYYY/MM/DD) TIME: 10:13:09 PAGE: 1
OVERRIDE--> CRLABEL3 LOCAL OPINENC Used in transfers to Main Office.
>>>CSFV0192 TYPE FOR KEY ENTRY CRLABEL3 LOCAL CONVERTED TO OPINENC.
>>>CSFV0232 INSTALLATION DATA FOR KEY ENTRY CRLABEL3 OPINENC SET TO Used in transfers to Main Office

OVERRIDE--> CRLABEL3 REMOTE IPINENC Used in receiving from the Main Office
>>>CSFV0192 TYPE FOR KEY ENTRY CRLABEL3 REMOTE CONVERTED TO IPINENC.
>>>CSFV0232 INSTALLATION DATA FOR KEY ENTRY CRLABEL3 IPINENC SET TO Used in receiving from the Main Office.

OVERRIDE--> KGLABEL1 LOCAL OPINENC Used for sending encrypted PINs
>>>CSFV0292 NO KEY ENTRY FOUND FOR KGLABEL1 LOCAL.

OVERRIDE--> LOLABEL2 Valid for January 2001
>>>CSFV0232 INSTALLATION DATA FOR KEY ENTRY LOLABEL2 EXPORTER SET TO Valid for January 2001.

OVERRIDE--> ZZZZ1 LOCAL Y Eliminate Key from output CKDS
>>>CSFV0382 ADD/CHANGE SPECIFICATIONS IGNORED ON OVERRIDE ENTRY. BYPASS_FLAG VALUE IS "Y".
>>>CSFV0292 NO KEY ENTRY FOUND FOR ZZZZ1 LOCAL.

>>>CSFV0012 CONVERSION PROCESSING COMPLETED. RETURN CODE = 4.

CRYPTOGRAPHIC CONVERSION ACTIVITY REPORT DATE: 2001/06/01 (YYYY/MM/DD) TIME: 10:13:09 PAGE: 2

CKDS DDNAME Data Set Name
------------ --------------
CSFVSRC PROD.CUSP.CKDS
CSFVINP TEST.CSF.CKDS
CSFVNEW MERGED.CSF.CKDS

PROCESSING SUMMARY

Source CKDS Entries Converted Entries ICSF Entries
-------------------------------- ----------------------------------- -----------------------------------

LOCAL 4 * Candidates 16 + Changed Input Entries 2
REMOTE 4 Bypassed by Overrides (0) Unchanged Input Entries 13
CROSS 4 --------------------------------
----------------------------- -------------------------------- TOTAL ICSF Input Entries 15

* TOTAL Source Entries 12 TOTAL Converted Entries 16 + Entries Added from Source 14
Entries Bypassed by Exit (0)

TOTAL Output ICSF Entries 29

* One Source CKDS CROSS entry converts to two Candidates.
+ Total Converted Entries = Changed Input Entries + Entries Added from Source.

Figure 2. Example of a Conversion Initial Activity Report

Chapter 3. Migration from CUSP/PCF to z/OS ICSF 45

program also places the information Used in transfers to Main Office in the
installation data field of the output ICSF CKDS entry.

The second override record specifies that when the conversion program converts a
CUSP/PCF entry labeled CRLABEL3 with a key type of remote, the program should
convert the key into an input PIN-encrypting key. The conversion program places
the information Used in receiving from the Main Office in the installation data
field of the output ICSF CKDS entry.

The label specified by the third override record does not exist in the CUSP/PCF
CKDS. Therefore, the conversion program ignores this override record.

The fourth override record specifies that when the conversion program converts a
CUSP/PCF entry labelled LOLABEL2, the program should place the information
Valid for January 2001 in the installation data field of the output ICSF CKDS
record.

The label specified by the fifth override record does not exist on the CUSP/PCF
CKDS that the conversion program is converting. Therefore, the conversion
program ignores this override record.

The message that the conversion processing has been completed is followed by a
return code. Return codes are documented under message CSFV0026 in z/OS
ICSF Messages.

After describing the five override records, the conversion report lists the data sets
the conversion program used in the conversion. PROD.CUSP.CKDS is the
CUSP/PCF CKDS that the program converted. TEST.CSF.CKDS is the input ICSF
CKDS containing the ICSF entries input during the conversion.
MERGED.CSF.CKDS is the output ICSF CKDS where the conversion program
placed the converted entries.

Then the activity report lists totals pertaining to the conversion. The CUSP/PCF
CKDS has a total of 12 entries: four with a key type of local, four with a key type of
remote, and four with a key type of cross. Because the conversion of each cross
key entry results in two ICSF entries, the total ICSF entries that are candidates for
conversion from the CUSP/PCF is 16. None of these candidates was bypassed
because of an override record, so 16 CUSP/PCF entries were converted.

There were 15 entries in the input ICSF CKDS, and two of these entries were
updated because they had identical key labels in the CUSP/PCF CKDS. Fourteen
new output ICSF CKDS entries were added from the CUSP/PCF CKDS. The total
number of entries in the output ICSF CKDS is 29. This includes the 15 entries in
the input ICSF CKDS and the 14 entries added from the CUSP/PCF CKDSN. No
entries were bypassed because of the conversion program exit.

Figure 3 on page 47 is an example of an activity report with a global override record
that has the conversion program bypass all the entries in the CUSP/PCF CKDS.
Then two override records are used to convert specific entries.

46 z/OS V1R3.0 ICSF System Programmer’s Guide

The first override record specifies that the conversion program bypass all the
entries in the CUSP/PCF CKDS. The second override record specifies that the
conversion program convert a CUSP/PCF entry labeled CRLABEL3 with a key type
of local into an output PIN-encrypting key. This second override record also
instructs the conversion program to place the phrase Used in transfers to Main
Office in the installation data field of the output ICSF CKDS entry. The third
override record specifies that the conversion program convert a CUSP/PCF entry
labeled LOLABEL2 and place Valid for January 2001 in the installation data field
of the output ICSF CKDS entry.

After describing the three override records, the conversion report lists the data sets
the conversion program used in the conversion. PROD.PCF.CKDS is the
CUSP/PCF CKDS that the program converted. INTEST.CSF.CKDS is the input
ICSF CKDS that contains the ICSF entries input containing the ICSF entries input
during the conversion. NEWTEST.CSF.CKDS is the output ICSF CKDS where the
conversion program placed the converted entries.

Then the activity report lists totals pertaining to the conversion. The CUSP/PCF
CKDS has a total of 12 entries: four with a key type of local, four with a key type of
remote, and four with a key type of cross. Because the conversion of each cross
key entry results in two ICSF entries, the total ICSF records that are candidates for
conversion from CUSP/PCF is 16. Fourteen of those 16 entries were bypassed
because of the global override record.

CRYPTOGRAPHIC CONVERSION ACTIVITY REPORT DATE: 2001/06/01 (YYYY/MM/DD) TIME: 10:13:09 PAGE: 1
OVERRIDE--> Y
>>>CSFV0172 ALL ENTRIES BYPASSED.

OVERRIDE--> CRLABEL3 LOCAL OPINENC Used in transfers to Main Office
>>>CSFV0222 KEY ENTRY CRLABEL3 LOCAL NOT BYPASSED.
>>>CSFV0192 TYPE FOR KEY ENTRY CRLABEL3 LOCAL CONVERTED TO OPINENC.
>>>CSFV0232 INSTALLATION DATA FOR KEY ENTRY CRLABEL3 OPINENC SET TO Used in transfers to Main Office.

OVERRIDE--> LOLABEL2 Valid for January 2001
>>>CSFV0222 KEY ENTRY LOLABEL2 LOCAL NOT BYPASSED.
>>>CSFV0232 INSTALLATION DATA FOR KEY ENTRY LOLABEL2 EXPORTER SET TO Valid for January 2001.

>>>CSFV0012 CONVERSION PROCESSING COMPLETED. RETURN CODE = 0.

CRYPTOGRAPHIC CONVERSION ACTIVITY REPORT DATE: 2001/06/01 (YYYY/MM/DD) TIME: 10:13:09 PAGE: 2

CKDS DDNAME Data Set Name
------------ --------------
CSFVSRC PROD.PCF.CKDS
CSFVINP INTEST.CSF.CKDS
CSFVNEW NEWTEST.CSF.CKDS

PROCESSING SUMMARY

Source CKDS Entries Converted Entries ICSF Entries
-------------------------------- ----------------------------------- -----------------------------------

LOCAL 4 * Candidates 16 + Changed Input Entries 1
REMOTE 4 Bypassed by Overrides (14) Unchanged Input Entries 27
CROSS 4 --------------------------------
----------------------------- -------------------------------- TOTAL ICSF Input Entries 28

* TOTAL Source Entries 12 TOTAL Converted Entries 2 + Entries Added from Source 1
Entries Bypassed by Exit (0)

TOTAL Output ICSF Entries 29

* One Source CKDS CROSS entry converts to two Candidates.
+ Total Converted Entries = Changed Input Entries + Entries Added from Source.

Figure 3. Example of a Conversion Update Activity Report

Chapter 3. Migration from CUSP/PCF to z/OS ICSF 47

There were 28 entries in the input ICSF CKDS, and one of these entries was
updated because it had an identical key label in the CUSP/PCF CKDS. The total
number of entries in the output ICSF CKDS is 29. This includes the 28 entries in
the input ICSF CKDS plus the one added from the CUSP/PCF CKDS. No entries
were bypassed because of the conversion program exit.

48 z/OS V1R3.0 ICSF System Programmer’s Guide

Chapter 4. Migration from Previous Releases of ICSF

This chapter describes migration considerations.

Your plan for migrating to the new level of ICSF should include information from a
variety of sources. These sources of information describe topics such as
coexistence, service, hardware and software requirements, installation and
migration procedures, and interface changes.

The following documentation, which is supplied with your product order, provides
information about installing your z/OS system. In addition to specific information
about ICSF, this documentation contains information about all of the z/OS elements.

v z/OS and z/OS.e Planning for Installation

This book describes the installation requirements for z/OS at a system and
element level. It includes hardware, software, and service requirements for both
the driving and target systems. It also describes any coexistence considerations
and actions.

v z/OS Program Directory

This document, which is provided with your z/OS product order, leads you
through the specific installation steps for ICSF and the other z/OS elements.

v ServerPac Installing Your Order

This is the order-customized, installation book for using the ServerPac Installation
method. Be sure to review “Appendix A. Product Information”, which describes
data sets supplied, jobs or procedures that have been completed for you, and
product status. IBM may have run jobs or made updates to PARMLIB or other
system control data sets. These updates could affect your migration.

Terminology
This section describes some terms you may need to know as you use this book.

Migration Activities that relate to the installation of a new
version or release of a program to replace an
earlier level. Completion of these activities ensures
that the applications and resources on your system
will function correctly at the new level.

Coexistence Two or more systems at different levels (for
example, software, service or operational levels)
that share resources. Coexistence includes the
ability of a system to respond in the following ways
to a new function that was introduced on another
system with which it shares resources: ignore a
new function, terminate gracefully, support a new
function. The following are examples of multisystem
configurations in which resource sharing can occur:

v A single system running multiple LPARs

v A single processor that is time-sliced to run
different levels of the system (for example, during
different times of the day)

v Two or more systems running separate
processors

© Copyright IBM Corp. 1997, 2002 49

v A Parallel Sysplex configuration (also includes a
basic sysplex)

Common Migration Activities for z/OS ICSF, OS/390 ICSF and
ICSF/MVS Version 2 Release 1

The following sections describe common activities and considerations that should
be considered when you migrate from:

v z/OS V1 R1 and higher

v OS/390 V2 R6 ICSF and higher

v OS/390 V2 R4 ICSF

v ICSF/MVS Version 2 Release 1

Note: For a list of specific OS/390 V2 R4 migration activities, see “Migrating
from V2 R4 ICSF” on page 57. For a list of specific ICSF/MVS Version 2
Release 1 migration activities, see “Migrating from ICSF/MVS Version 2
Release 1” on page 57.

Access to Callable Services
Access to services that are executed on the PCI Cryptographic Coprocessor is
through Access Control Points in the DEFAULT Role. To execute callable services
on the PCI Cryptographic Coprocessor, access control points must be enabled for
each service in the DEFAULT Role. The ability to enable/disable access control
points in the DEFAULT Role was introduced on OS/390 V2 R10 through APAR
OW46381 for the Trusted Key Entry Workstation. For systems that do not use the
optional TKE Workstation, all access control points (current and new) are enabled in
the DEFAULT Role with the appropriate microcode level on the PCI Cryptographic
Coprocessor. New TKE users and non-TKE users have all access control points
enabled. This is also true for brand new TKE V3.1 users (not converting from TKE
V3.0).

Note: Access control point DKYGENKY-DALL is always disabled in the DEFAULT
Role for all customers (TKE and Non-TKE). A TKE Workstation is required to
enable this access control point for the Diversified Key Generate service.

For existing TKE V3.0 users, upgrading to TKE V3.1 (APAR OW46381 and its
corresponding ECA), current access control points in the DEFAULT Role are
enabled. Any new access control points are disabled in the DEFAULT Role and
must be enabled through TKE if the service is required.

Notes:

1. APAR OW46381 will update the TKE Host Code (z/OS V1 R1 and below)

2. ECA 186 will update the TKE Workstation Code

3. The latest or most current driver is required for the PCI Cryptographic
Coprocessor microcode for the S/390 G5 Enterprise Server or the S/390 G6
Enterprise Server

4. The latest or most current driver is required for the PCI Cryptographic
Coprocessor microcode for the IBM Eserver zSeries 900

All of the above components are required for complete access control point support.

Access to services which execute on the Cryptographic Coprocessor Feature is
through SAF. Disablement through SAF is sufficient to prevent execution of a
service by either the Cryptographic Coprocessor Feature or the PCI Cryptographic

50 z/OS V1R3.0 ICSF System Programmer’s Guide

|

|

|
|
|

|
|

Coprocessor. For functions which can be executed on the PCI Cryptographic
Coprocessor, enablement of the function requires that the function be enabled
through SAF and through the access control point in the DEFAULT Role.

If you are on OS/390 V2 R10, using a TKE V3.0 workstation, access control points
for new services (requiring APARs OW46380 and OW46382) will be disabled.
Existing access control points will be enabled in the DEFAULT Role. APAR
OW46381 must be installed to enable the OS/390 V2 R10 interface. This will allow
the TKE Administrator to enable any new access control points for ICSF services
that execute in the PCI Cryptographic Coprocessor under the DEFAULT Role.

Access Control Points (requiring APARs OW46380 and OW46382) for OS/390 V2
R10 are:

v DATAM Key Management Control

Note: For existing TKE installations (upgrading to TKE V3.1), it is required that
this access control point be enabled. Failure to do so will result in
processing errors for Double MAC keys in Key Import, Key Export, and
Key Generate.

v Diversified Key Generate - Single length or same halves

v Diversified Key Generate - CLR8-ENC

v Diversified Key Generate - TDES-ENC

v Diversified Key Generate - TDES-DEC

v Diversified Key Generate - SESS-XOR

v Diversified Key Generate - DKYGENKY-DALL

Note: This access control point is always disabled in the DEFAULT Role for all
customers (TKE and Non-TKE). A TKE Workstation is required to enable
the function.

v MAC Generate - For existing TKE installations, it is recommended that this
access control point be enabled.

v MAC Verify - For existing TKE installations, it is recommended that this access
control point be enabled.

Access Control Points for z/OS V1 R2 are:

v PKA Key Token Change

v Secure Messaging for Keys

v Secure Messaging for PINs

Access Control Points for z/OS V1 R3 are:

v UKPT - PIN Verify, PIN Translate

Callable Services
v Control Vector Generate (CSNBCVG) - Beginning in OS/390 V2 R10, this

callable service has been enhanced to support new key types KEYGENKY,
DKYGENKY, and SECMSG. The following rule_array keywords are also
supported: CLR8-ENC, DALL, DDATA, DEXP, DIMP, DKYL0, DKYL1, DKYL2,
DKYL3, DKYL4, DKYL5, DKYL6, DKYL7, DMAC, DMKEY, DMPIN, DMV, DPVR,
SMKEY, and SMPIN.

Beginning in z/OS V1 R3, the rule_array parameter has been enhanced to
support the UKPT keyword.

Chapter 4. Migration from Previous Releases of ICSF 51

|

|

|
|

v Digital Signature Generate (CSNDDSG) - Beginning with OS/390 V2 R9 ICSF, if
you specify ZERO-PAD in the rule_array parameter, the input hash length is
limited to 32 bytes (256 bits). APAR OW48511 (for OS/390 V2 R9 and OS/390
V2 R10) changes the hash length limit to 256 bytes when ZERO-PAD is specified
for signature use only keys. It also increases the hash length limit for all other
keys when ZERO-PAD is specified to 36 bytes.

Beginning in OS/390 V2 R10, ANSI X9.31 formatting for a digital signature is
supported. New rule_array keywords are: X9.31, SHA-1, and RPMD-160.

v Digital Signature Verify (CSNDDSV) - Beginning in OS/390 V2 R10, ANSI X9.31
formatting for a digital signature is supported. New rule_array keyword X9.31 has
been added.

v Diversified Key Generate (CSNBDKG) - This is a new service in OS/390 V2 R10.
This service generates a key based on the key-generating key, the processing
method, and the parameter supplied.

v Encrypted PIN Translate (CSNBPTR) - Beginning in z/OS V1 R3, the rule_array
parameter has been enhanced to support UKPT keywords UKPTIPIN,
UKPTOPIN, and UKPTBOTH.

v Encrypted PIN Verify (CSNBPVR) - Beginning in z/OS V1 R3, the rule_array
parameter has been enhanced to support the UKPT keyword UKPTIPIN.

v Key Generate (CSNBKGN) - Beginning in OS/390 V2 R10, this callable service
has been enhanced to support KEYGENKY and DKYGENKY key types through
the TOKEN key type keyword and the specification of the proper control vector in
the target_key_identifier field.

v Key Export (CSNBKEX) - Beginning in OS/390 V2 R10, this callable service has
been enhanced to support the source key being specified as a label.

v Key Token Build (CSNBKTB) - Beginning in OS/390 V2 R10, this callable service
has been enhanced to support new key types: KEYGENKY, DKYGENKY, and
SECMSG.

Beginning in z/OS V1 R3, the rule_array parameter has been enhanced to
support the UKPT keyword.

v One-Way Hash Generate (CSNBOWH) - Beginning in OS/390 V2 R10, this
callable service has been enhanced to support the RIPEMD-160 hash algorithm.

v PCI Interface (CSFPCI) - Beginning in OS/390 V2 R10, this callable service has
been enhanced to query a list of enabled/disabled access control points.

v PKA Decrypt (CSNDPKD) - Beginning in OS/390 V2 R10, this callable service
has been enhanced to support a clear RSA modulus-exponent or Chinese
Reminder key.

v PKA Encrypt (CSNDPKE) - A new rule_array parameter, ZERO-PAD, has been
added in OS/390 R2 R10 (APAR OW48132). The key value will be padded on
the left with binary zeros to the length of the PKA key modulus.

v PKA Key Generate (CSFDPKG) - Beginning with OS/390 V2 R9 ICSF,
CSFDPKG supports writing the generated_key directly to the PKDS. This means
that the generated_key_token field is now an INPUT as well as an OUTPUT field.
If a PKDS label name is not being supplied, then a value less than a blank X'40'
must be supplied in the first byte of the parameter or else the service fails with a
return code 8 reason code X'2AF8'.

Beginning in OS/390 V2 R10, this service was enhanced to support the XPORT
rule_array parameter.

v PKA Key Import (CSNDPKI) - Beginning with OS/390 V2 R9 ICSF, CSFDPKI
supports writing the target_key_identifier directly to the PKDS. This means that
the target_key_identifier field is now an INPUT as well as an OUTPUT field. If a

52 z/OS V1R3.0 ICSF System Programmer’s Guide

|
|
|

|
|

|
|

PKDS label name is not being supplied, then a value less than a blank X'40'
must be supplied in the first byte of the parameter or else the service fails with a
return code 8 reason code X'2AF8'.

v PKA Key Token Change (CSNDKTC) - This service is new in z/OS V1 R2. It
changes PKA private key tokens (RSA and DSS) from encipherment with the old
PCI Cryptographic Coprocessor ASYM-MK to encipherment with the current PCI
Cryptographic Coprocessor ASYM-MK. PKA private keys encrypted under the
KMMK cannot be reenciphered using this service unless the KMMK has the
same value as the SMK.

v Public Key Extract (CSNDPKX) - Beginning with OS/390 V2 R9 ICSF, this
service must be in task mode, not SRB mode. It was also enhanced to support
PKDS labels as well as tokens. This requires a change to the stub module
CSNDPKX. Existing applications that have been link edited with the old stub
module will still run without change. Access to this service can also be RACF
controlled.

v Secure Messaging for Keys (CSFBSKY) - This is a new service for z/OS V1 R2.
It encrypts a text block, including a clear key value decrypted from an internal or
external DES token.

v Secure Messaging for PINs (CSFBSPN) - This is a new service for z/OS V1 R2.
It encrypts a text block, including a clear PIN block recovered from an encrypted
PIN block. The clear PIN block can be self encrypted before it is included in the
text block.

v Symmetric Key Decipher (CSNBSYD) - This is a new service for z/OS V1 R3.
This callable service deciphers data in an address space or a data space using
the cipher block chaining or electronic code book modes. The Symmetric Key
Decipher service (AES support) is also available on z/OS V1 R2 through APAR
OW51349.

v Symmetric Key Encipher (CSNBSYE) - This is a new service for z/OS V1 R3.
This callable service enciphers data in an address space or a data space using
the cipher block chaining or electronic code book modes. The Symmetric Key
Encipher service (AES support) is also available on z/OS V1 R2 through APAR
OW51349.

v Symmetric Key Export (CSNDSYX) - Beginning in z/OS V1 R3, a new rule_array
keyword, PKCSOAEP, has been added. This keyword specifies the method found
in RSA PKCS #1V2 OAEP. APAR OW50507 is available on HCR7703 (OS/390
V2 R10 and z/OS V1 R1) and HCR7704 (z/OS V1 R2).

v Symmetric Key Generate (CSNDSYG) - Beginning in z/OS V1 R3, a new
rule_array keyword, PKCSOAEP, has been added. This keyword specifies the
method found in RSA PKCS #1V2 OAEP. APAR OW50507 is available on
HCR7703 (OS/390 V2 R10 and z/OS V1 R1) and HCR7704 (z/OS V1 R2).

v Symmetric Key Import (CSNDSYI) - Beginning with OS/390 V2 R9 ICSF, the
target_key_identifier_length parameter size must be 64 bytes.

Beginning in z/OS V1 R3, a new rule_array keyword, PKCSOAEP, has been
added. This keyword specifies the method found in RSA PKCS #1V2 OAEP.
APAR OW50507 is available on HCR7703 (OS/390 V2 R10 and z/OS V1 R1)
and HCR7704 (z/OS V1 R2).

v Beginning in z/OS V1 R2, MAXLEN parameter checking has been eliminated for
the following services:

– Encipher (CSNBENC and CSNBENC1)

– Decipher (CSNBDEC and CSNBDEC1)

– MAC generate (CSNBMGN and CSNBMGN1)

– MAC verify (CSNBMVR and CSNBMVR1)

Chapter 4. Migration from Previous Releases of ICSF 53

|
|
|
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|

– Ciphertext translate (CSNBCTT and CSNBCTT1)

– MDC generate (CSNBMDG and CSNBMDG1)

The MAXLEN parameter is also no longer enforced in the CUSP compatibility
CIPHER service. The MAXLEN parameter may still be specified in the options
data set, but only the maximum value limit will be enforced (2147483647). If a
value greater than this is specified, an error will result and ICSF will not start.

CICS Attachment Facility
If you have the CICS Attachment Facility installed with OS/390 V2 R4 ICSF and
above (including z/OS), and you have ICSF CICS TRUE enabled, install APAR
OW40011 on HCRP210 and APAR OW43444 on HCRP220 and HCRP230 and
relink your applications that invoke the following ICSF services to pick up the
updated service stubs.

Note: If you have previously installed these APARs and relinked your applications
at that time, no action is required.

v HCRP210 (ICSF/MVS V2 R1, OS/390 V2 R4 ICSF, OS/390 V2 R5 ICSF):
CSNBKRC, CSNBKRW, CSNBKRD, CSNDDSG, CSNDDSV, CSNDPKG,
CSNDPKI, CSNDSYX, CSNDSYG, CSNDSYI, CSNDKRC, CSNDKRW,
CSNDKRD, CSNDKRR, CSNDSBC, CSNDSBD

v HCRP220 (OS/390 V2 R6 ICSF, OS/390 V2 R7 ICSF, OS/390 V2 R8 ICSF):
CSNBKRC, CSNBKRW, CSNBKRD, CSNDDSG, CSNDDSV, CSNDPKG,
CSNDPKI, CSNDSYX, CSNDSYG, CSNDSYI, CSNDKRC, CSNDKRW,
CSNDKRD, CSNDKRR, CSNDSBC, CSNDSBD, CSNDPKD, CSNDPKE

v HCRP230 (OS/390 V2 R9 ICSF): CSNBKRC, CSNBKRW, CSNBKRD,
CSNDDSG, CSNDDSV, CSNDPKG, CSNDPKI, CSNDSYX, CSNDSYG,
CSNDSYI, CSNDKRC, CSNDKRW, CSNDKRD, CSNDKRR, CSNDSBC,
CSNDSBD, CSNDPKD, CSNDPKE, CSNDPKX, CSNDRKD, CSNDRKL

CKDS
If you are migrating from ICSF/MVS Version 2 Release 1, see “Migrating from V2
R4 ICSF” on page 57 for a specific CKDS migration information. The following
applies if you are migrating from OS/390 V2 R4 ICSF or OS/390 V2 R6 and higher
ICSF.

Once new key types are added to the CKDS, the following considerations apply
when sharing the CKDS with non-R10 or non-z/OS systems:

v once keys with non-CCF control vectors are added to the CKDS, a CKDS
reencipher operation must be invoked from a system which has a PCI
Cryptographic Coprocessor installed.

v once keys of type IMPORTER, EXPORTER, PINGEN, PINVER, IPINENC, or
OPINENC which have non-CCF control vectors are added to the CKDS, a
toleration APAR OW43926 must be installed on the non-OS/390 V2 R10 ICSF
systems. The APAR ensures that ICSF services will fail a request to use a key
which contains a non-CCF control vector.

Installation Options Data Set
PKDSCACHE, an installation option, defines the size of the PKDS Cache in
records. The PKDS cache improves performance as it facilitates access to
frequently used records. Specify n as a decimal value from 0 to 256. If n is zero, no

54 z/OS V1R3.0 ICSF System Programmer’s Guide

cache will be implemented. If PKDSCACHE is not specified, the default value is 64.
PKDSCACHE can be implemented on OS/390 V2 R10 and z/OS V1 R1 by
installing APAR OW48568.

Key Tokens
v Existing DES internal key tokens can be used on either the Cryptographic

Coprocessor Feature or the PCI Cryptographic Coprocessor.

v An existing PKA internal token created for the Cryptographic Coprocessor
Feature cannot be used on the PCI Cryptographic Coprocessor unless you
recreate it by reimporting the key. Since the Cryptographic Coprocessor Feature
cannot generate PKA keys (these tokens were all generated on another platform
and imported for use with the Cryptographic Coprocessor Feature), you’ll need to
reimport them to use them on the PCI Cryptographic Coprocessor. For maximum
flexibility, you should install the SMK to be equal to the KMMK. Existing PKA
tokens should then be reimported.

PCI Cryptographic Accelerator
If you have a PCI Cryptographic Accelerator online, toleration APAR OW49402 is
required on lower levels of ICSF (OS/390 V2 R9, OS/390 V2 R10 and z/OS V1 R1).
Without this APAR, ICSF will abend with an X'18F' reason code 50.

PKA Public Key Storage
You need to create a PKDS in order to do the following:

v Start V2 R9 ICSF or higher.

v Use the PKDS update callable services.

These callable services will not work with any public key storage mechanisms
other than the PKDS. Therefore, you will need to migrate any existing public keys
to the PKDS.

v Use key labels for PKA keys instead of tokens on certain callable services.

v A PKDS is required to generate and use RSA private keys that are retained
within a PCI Cryptographic Coprocessor.

PKDS
Beginning with OS/390 V2 R9, the PKDS is required.

Beginning in z/OS V1 R2, support to REENCIPHER PKDS and ACTIVATE PKDS
has been added to the Master Key Management Panels and to the new CSFPUTIL
utility. CSFPUTIL is a new utility that performs the same functions as REENCIPHER
PKDS and ACTIVATE PKDS. These functions allow you to reencipher the PKDS
from the old asymmetric-keys master key to the current master key and activate the
reenciphered PKDS. Other systems with lower levels of ICSF which are sharing the
PKDS would disable PKDS read and PKDS write and activate the reeniciphered
PKDS. For information on managing and sharing the PKDS in a sysplex
environment, see z/OS ICSF Administrator’s Guide, SA22-7521. Toleration APAR
OW49386 is required on the following systems in order to activate the
re-enciphered PKDS:

v HCRP210 (standalone), HCRP220 (OS/390 V2 R6, OS/390 V2 R7, OS/390 V2
R8), HCRP230 (OS/390 V2 R9), and HCR7703 (OS/390 V2 R10 and z/OS V1
R1)

With OS/390 V2 R6 ICSF and above (including z/OS), if you share the PKDS with
lower level releases of ICSF, the following APARS must be installed:

Chapter 4. Migration from Previous Releases of ICSF 55

v HCRP210 (ICSF/MVS V2 R1, OS/390 V2 R4 ICSF, OS/390 V2 R5 ICSF) must
have APARS OW33234 and OW37623 installed. If you are running OS/390 V2
R9 ICSF, you must also have APAR OW43275 installed on HCRP210. New
OS/390 V2 R9 ICSF tokens on previous releases of ICSF will be handled as
follows. For additional information on ME and CRT tokens, see diagnosis
reference information in z/OS ICSF System Programmer’s Guide.

– Retained key tokens contain a public key token. These public key tokens may
be used in public key services such as Digital Signature Verify (CSNDDSV).
These tokens may not be updated or deleted through the PKDS Record Write
(CSNDKRW) or PKDS Record Delete (CSNDKRD) callable services.

– All modulus-exponent form RSA internal key tokens imported or created on an
OS/390 V2 R9 ICSF or OS/390 V2 R10 ICSF system with PCI Cryptographic
Coprocessor will have a private section identifier of X'06'. These tokens will be
converted where possible to internal tokens with a private section of X'02' for
use on previous levels of ICSF without a PCI Cryptographic Coprocessor.
Modulus-exponent tokens with a private section identifier of X’06’ which are
signature-use only tokens can be converted since these tokens are encrypted
under the ASYM-MK of the PCI Cryptographic Coprocessor (which is the
same as the SMK of the Cryptographic Coprocessor Feature).
Modulus-exponent tokens with a private section identifier of X'06' which are
designated as key-management usage can only be converted for use on
previous levels of ICSF if the KMMK on the Cryptographic Coprocessor
Feature is the same as the SMK.

– CRT tokens are not supported on previous levels of ICSF.

v HCRP220 (OS/390 V2 R6 ICSF, OS/390 V2 R7 ICSF, OS/390 V2 R8 ICSF) must
have APAR OW37623 installed. If you are running OS/390 V2 R9 ICSF, you must
also have APAR OW43275 installed on HCRP220. New OS/390 V2 R9 ICSF
tokens on previous releases of ICSF will be handled as follows. For additional
information on ME and CRT tokens, see diagnosis reference information in z/OS
ICSF System Programmer’s Guide.

– Retained key tokens contain a public key token. These public key tokens may
be used in public key services such as Digital Signature Verify (CSNDDSV).
These tokens may not be updated or deleted through the PKDS Record Write
(CSNDKRW) or PKDS Record Delete (CSNDKRD) callable services.

– All modulus-exponent form RSA internal key tokens imported or created on an
OS/390 V2 R9 ICSF or OS/390 V2 R9 ICSF system with PCI Cryptographic
Coprocessor will have a private section identifier of X'06'. These tokens will be
converted where possible to internal tokens with a private section of X'02' for
use on previous levels of ICSF without a PCI Cryptographic Coprocessor.
Modulus-exponent tokens with a private section identifier of X’06’ which are
signature-use only tokens can be converted since these tokens are encrypted
under the ASYM-MK of the PCI Cryptographic Coprocessor (which is the
same as the SMK of the Cryptographic Coprocessor Feature).
Modulus-exponent tokens with a private section identifier of X'06' which are
designated as key-management usage can only be converted for use on
previous levels of ICSF if the KMMK on the Cryptographic Coprocessor
Feature is the same as the SMK.

– CRT tokens are not supported on previous levels of ICSF.

Resource Manager Interface (RMF)
Beginning in z/OS V1 R3, support to enable RMF to provide performance
measurements on the following selected ICSF services and functions that use
Direct Access Crypto (DAC) CCF instructions has been added. Support to enable
RMF is also available on z/OS V1 R2 through APAR OW51003.

56 z/OS V1R3.0 ICSF System Programmer’s Guide

|

|
|
|
|

v Encipher (CSNBENC)

v Decipher (CSNBDEC)

v MAC Generate (CSNBMGN)

v MAC Verify (CSNBMVR)

v One-Way Hash (CSNBOWH)

v PIN Translate (CSNBPTR)

v PIN Verify (CSNBPVR)

Special Secure Mode
Use of some ICSF services (CSNBSKI, CSNBSKM, CSNBPGN, CSNBCPA,
CSNDSYG with the IM keyword) requires that ICSF be in special secure mode.

Note: If a PCI Cryptographic Coprocessor is available and the modulus bit length
of the RSA public key is greater than or equal to 512 bits, than special
secure mode is not required for SYG IM form.

TKE Workstation
The TKE workstation (Version 3 or later) uses the IBM 4758 card. The TKE
workstation (Version 2) uses the IBM 4755 card. There are many changes to the
TKE workstation and software. If you have a TKE workstation (Version 3 or higher)
that connects to a host system running z/OS V1 R1 or lower, install APAR
OW46381 on the system(s) running releases prior to z/OS V1 R2 to ensure proper
communications between the TKE workstation and ICSF. For detailed information
on these changes, refer to z/OS ICSF TKE Workstation User’s Guide 2000.

Migrating from V2 R4 ICSF
The following sections describe activities and considerations that should be
considered when migrating from V2 R4 ICSF. For a list of other migration activites,
see “Common Migration Activities for z/OS ICSF, OS/390 ICSF and ICSF/MVS
Version 2 Release 1” on page 50.

Installation Exits
The following differences in installation exits occurred between OS/390 V2 R4 ICSF
and OS/390 V2 R5 ICSF and should be considered if upgrading from OS/390 V2
R4 ICSF or previous releases of ICSF. If you have already applied APAR OW31961
to OS/390 V2 R4 ICSF, you already have these changes.

v An additional parameter in the Single-record, Read-write installation exit identifies
the accessed key data set as either the CKDS or the PKDS.

v The Key Generation Utility Program Exit Parameter Block (KGXP) contains a
new subfield to hold the third key part for triple-length DATA keys.

v Any installation with either a Single-record, Read-write exit or a KGUP exit
should recompile the exit.

Migrating from ICSF/MVS Version 2 Release 1
The following sections describe activities and considerations that should be
considered when migrating from ICSF/MVS Version 2 Release 1. For a list of other
migration activites, see “Common Migration Activities for z/OS ICSF, OS/390 ICSF
and ICSF/MVS Version 2 Release 1” on page 50.

Chapter 4. Migration from Previous Releases of ICSF 57

|

|

|

|

|

|

|

|
|
|
|
|
|
|

z/OS ICSF supports all versions of the cryptographic feature hardware. Customers
who have OS/390 Enterprise Servers, OS/390 Multiprise servers or the IBM
Eserver zSeries with the Cryptographic Coprocessor Feature can migrate to z/OS
ICSF across their entire installation.

CKDS
A Version 1 Release 2 customer who shares a CKDS among multiple instances of
ICSF need not migrate all instances of ICSF at the same time. Although, once new
key types are added to the CKDS, the following considerations apply when sharing
the CKDS:

v After you change a CKDS to contain the ANSI X9.17 enablement keys, all
instances of ICSF/MVS Version 1 Release 2 that share that CKDS must have
PTF UW90181 installed. This PTF was shipped against ICSF/MVS Version 1
Release 2 and was rolled up into Version 2 Release 1.

v You can share a CKDS that contains a limited authority importer key. However,
OS/390 ICSF or ICSF/MVS 2.1 running on S/390 Enterprise Servers and S/390
Multiprise servers must perform any CKDS reencipherment.

v once new system keys, double-length MAC keys, IMP-PKA keys, etc. (introduced
in ICSF/MVS 2.1) are added to the CKDS, it is sharable with instances of
ICSF/MVS which do not support these keys. A CKDS reencipher operation must
be performed on a system which supports these key types.

v once keys with non-CCF control vectors are added to the CKDS, a CKDS
reencipher operation must be invoked from a system which has a PCI
Cryptographic Coprocessor installed.

v once keys of type IMPORTER, EXPORTER, PINGEN, PINVER, IPINENC, or
OPINENC which have non-CCF control vectors are added to the CKDS, a
toleration APAR OW43926 must be installed on the non-OS/390 V2 R10 ICSF
systems. The APAR ensures that ICSF services will fail a request to use a key
which contains a non-CCF control vector.

Installation Exits
The following differences in installation exits occurred between OS/390 V2 R4 ICSF
and OS/390 V2 R5 ICSF and should be considered if upgrading from OS/390 V2
R4 ICSF or previous releases of ICSF. If you have already applied APAR OW31961
to OS/390 V2 R4 ICSF, you already have these changes.

v An additional parameter in the Single-record, Read-write installation exit identifies
the accessed key data set as either the CKDS or the PKDS.

v The Key Generation Utility Program Exit Parameter Block (KGXP) contains a
new subfield to hold the third key part for triple-length DATA keys.

v Any installation with either a Single-record, Read-write exit or a KGUP exit
should recompile the exit.

Migrating from ICSF/MVS Version 1
The following sections describe activities and considerations that should be
considered when migrating from ICSF/MVS Version 1 Release 2 and Version 1
Release 1.

The following differences in installation exits occurred between OS/390 V2 R4 ICSF
and OS/390 V2 R5 ICSF and should be considered if upgrading from ICSF/MVS
Version 1.

v An additional parameter in the Single-record, Read-write installation exit identifies
the accessed key data set as either the CKDS or the PKDS.

58 z/OS V1R3.0 ICSF System Programmer’s Guide

v The Key Generation Utility Program Exit Parameter Block (KGXP) contains a
new subfield to hold the third key part for triple-length DATA keys.

v Any installation with either a Single-record, Read-write exit or a KGUP exit
should recompile the exit.

Depending on which release of ICSF/MVS Version 1 you are migrating from, you
will have different options to consider.

Migrating from ICSF/MVS Version 1 Release 2
You can use ICSF/MVS Version 1 Release 2 applications on ICSF without
reassembling or relinking. This includes CUSP or PCF applications if you are
running in compatibility mode.

If your installation is currently using ICSF/MVS Version 1 Release 2, consider the
following:

v CKDS

If you share a CKDS among multiple instances of ICSF/MVS you do not have to
migrate all instances of ICSF/MVS at the same time. Although, once new key
types are added to the CKDS, the following considerations apply when sharing
the CKDS:

– After you change a CKDS to contain the ANSI X9.17 enablement keys, all
instances of ICSF/MVS that share that CKDS must have PTF UW90181
installed. This PTF was shipped against ICSF/MVS Version 1 Release 2 and
was rolled up into Version 2 Release 1.

– once a CKDS is modified to contain the ANSI X9.17 enablement keys, all
instances of ICSF/MVS that share the CKDS must have APAR OW13633
installed.

– once new system keys (double-length MAC keys, IMP-PKA keys, etc)
introduced in ICSF/MVS 2.1 are added to the CKDS, it is sharable with
instances of ICSF/MVS which do not support these keys. A CKDS reencipher
operation must be performed on a system which supports these key types.

– once keys with non-CCF control vectors are added to the CKDS, a CKDS
reencipher operation must be invoked from a system which has a PCI
Cryptographic Coprocessor installed.

– once keys of type IMPORTER, EXPORTER, PINGEN, PINVER, IPINENC, or
OPINENC which has non-CCF control vectors are added to the CKDS, a
toleration APAR OW43926 must be installed on the non-OS/390 V2 R10 ICSF
or non-z/OS systems. The APAR ensures that ICSF services will fail a request
to use a key which contains a non-CCF control vector.

v ICSF/MVS Version 1 Release 2 Cryptographic Key Data Set

An ICSF/MVS Version 1 Release 2 CKDS will work on ICSF with no changes.

v Installation exits

The following differences in installation exits occurred between OS/390 V2 R4
ICSF and OS/390 V2 R5 ICSF and should be considered if upgrading from
ICSF/MVS Version 1 Release 2.

– An additional parameter in the Single-record, Read-write installation exit
identifies the accessed key data set as either the CKDS or the PKDS.

– The Key Generation Utility Program Exit Parameter Block (KGXP) contains a
new subfield to hold the third key part for triple-length DATA keys.

– Any installation with either a Single-record, Read-write exit or a KGUP exit
should recompile the exit.

Chapter 4. Migration from Previous Releases of ICSF 59

If you have user exits for ICSF/MVS Version 1 Release 2, they will work with
ICSF with no modification.

Since the RACF Security Access Facility (SAF) interface fully supports ICSF,
OS/390 ICSF does not include the security exit routines that were provided with
the previous release of ICSF. If you are using these security exit routines with
ICSF/MVS Version 1 Release 2, you will need to migrate to the full SAF/RACF
support. This support is available as a part of the Security Server option.

v Master Key Entry

With ICSF on S/390 G3 Enterprise Server, or higher and the S/390 Multiprise,
there are several options for master key entry. The option that is right for your
application depends on the security requirements of your installation. The options
include:

– Pass Phrase Initialization allows the casual user to enter a pass phrase on
the ICSF panels to set both DES and PKA master keys and initialize the
CKDS. The value of the master keys is a repeatable function of the pass
phrase. For this reason, the security of the pass phrase is critical to the
security of the system.

– The Clear Master Key Entry process allows the user to enter master key parts
directly into the Cryptographic Coprocessor Feature through the use of ISCF
panels. In this procedure, the key parts appear briefly in the clear in host
storage within the address space of the TSO user who is entering the keys
and within the ICSF address space. When the master keys are stored in the
secure Cryptographic Coprocessor Feature, these address spaces are
cleared.

– The optional Trusted Key Entry (TKE) workstation (feature code 0806)
replaces the physically secure hardware master key entry path available on
bipolar processors with a logically secure channel implemented through an
APPC (TKE Version 2) attachment. Installations that require this level of
security need the TKE workstation, which comes fully configured by IBM
Customized Solutions.

Migrating from ICSF/MVS Version 1 Release 1
You can use ICSF/MVS Version 1 Release 1 applications on ICSF without
reassembling or relinking. This includes CUSP or PCF applications if you are
running in compatibility mode.

Note: One exception to this is that ICSF/MVS Version 1 Release 1 key labels with
a non-zero qualifier need to be RENAMED to an ICSF supported key label.
Because the new label differs from the ICSF/MVS Version 1 Release 1 label,
the applications need to be changed.

Note that once you create a CKDS that contains the ANSI enablement keys, all
instances of ICSF/MVS that share that CKDS must have PTF UW90181 installed.
This PTF was shipped against Version 1 Release 2 and was rolled up into Version
2.

If your installation is currently using ICSF/MVS Version 1 Release 1 and you are
migrating to ICSF, consider the following:

v ICSF/MVS Version 1 Release 1 Cryptographic Key Data Set

ICSF provides a conversion program to migrate an ICSF/MVS Version 1 Release
1 CKDS to an ICSF compatible CKDS. You can run the CKDS conversion
program from either ICSF/MVS Version 1 Release 1 or OS/390 ICSF.

60 z/OS V1R3.0 ICSF System Programmer’s Guide

v Installation exits

If you have user exits for ICSF/MVS Version 1 Release 1, they will work with
OS/390 ICSF or z/OS with no modification.

v Key labels

ICSF/MVS Version 1 Release 1 supports a key label of up to 8 bytes and
multiple key types per label in the CKDS. ICSF/MVS Version 1 Release 2
introduced support for an extended key label of up to 64 bytes and required
unique key labels for data-encrypting, data-translating, MAC-generating, and
MAC-verifying keys. ICSF continues to support the 64-byte key label. The ICSF
CKDS and KGUP will continue to support multiple key types per label for
importer and exporter key-encrypting keys and PIN keys under the following
conditions. You must use either KGUP or the KEU to enter the keys, and the key
label cannot conflict with other unique label restrictions.

RACF and security exit key protection in ICSF/MVS Version 1 Release 2 are by
label rather than label.type. You need to rewrite any current RACF or security exit
profiles that are based on label.type.

Converting a Version 1 Release 1 CKDS to z/OS ICSF Format
z/OS ICSF provides a conversion program, CSFCVR1, that converts a Version 1
Release 1 CKDS to the z/OS ICSF format. You can run the conversion program
from either Version 1 Release 1 or from z/OS ICSF if you ensure that the system
meets the following conditions:

v If you are running the CSFCVR1 conversion program on a Version 1 Release 1
system, you must fully initialize the Version 1 Release 1 system to the point of
enabling application services.

The job control language for CSFCVR1 must STEPLIB to the entire z/OS ICSF
load library. Running the conversion program in Version 1 Release 1 does not
involve loading a new master key or initializing a new CKDS (as in z/OS ICSF).
For these reasons, it is the recommended conversion option.

v If you are running the CSFCVR1 conversion program on a z/OS ICSF system,
you must fully initialize the z/OS ICSF system to the point of enabling application
services.

This means that you must first load a new master key and then complete the
initialization of a z/OS ICSF CKDS. ICSF uses this new CKDS during the
conversion process, but it is not the target of the conversion.

The next two sections describe how the conversion program runs and how to start
it.

How the Conversion Program Works
The conversion program remaps each record in the Version 1 Release 1 CKDS to
the new format. With the exception of the label and qualifier fields, the conversion
program copies these records identically. During the conversion, ICSF calculates a
new authentication code for each converted CKDS record. The conversion program
does not call any exits and does not support the use of an override file.

Converting to the New Label Format
The conversion program remaps the 8-byte Version 1 Release 1 label field to the
64-character label field, padded on the right with blanks. If the input CKDS record
contains nonzero information in the key qualifier field, the program converts the
entire 8-byte hexadecimal field to a 16-byte EBCDIC character field. It appends
16-byte EBCDIC character field to the right of the new key label preceded by a
single period (.).

Chapter 4. Migration from Previous Releases of ICSF 61

For example, suppose you have a Version 1 Release 1 input record that contains a
label of METOYOU, a type of EXPORTER, and a qualifier of X'1102920000000000'.
This is converted to a ICSF label of METOYOU.1102920000000000, padded on the
right with blanks to the full 64-byte label field.

Existing applications that use the old 8-byte label and count on the CKDS Retrieval
Exit to select a key based on a nonzero qualifier do not work with the OS/390 ICSF
or z/OS CKDS. You can use the KGUP RENAME verb to rename these changed
labels to a valid 64-byte label.

Running the Conversion Program
You run the conversion program by submitting a batch job. On the EXEC statement,
specify PGM=CSFCVR1.

The following example is the job control language that runs the conversion program:
//DAFRANK3 JOB
//CONVERT EXEC PGM=CSFCVR1
//CSFVSRC DD DSN=ICSFR1.HCRP100.CKDS,DISP=SHR
//CSFVNEW DD DSN=ICSFV2.HCRP210.CKDS,DISP=SHR
//CSFVRPT DD SYSOUT=*
//

All the data sets necessary to run the conversion program are specified using DD
statements.

The conversion program uses the following data sets:

CSFVSRC
The ICSF/MVS Version 1 Release 1 CKDS containing entries that you want
to convert into the z/OS ICSF format and place in the output CKDS. This is
the source CKDS for the conversion.

CSFVNEW
An empty disk copy of an ICSF CKDS. This is the z/OS ICSF CKDS into
which the conversion program places key entries. The data set must be
defined and empty before you run the conversion program.

CSFVRPT
The activity report that the conversion program creates. The report contains
a summary of the conversion process and includes error messages. The
report lists only changed labels by their converted OS/390 ICSF label. The
report provides the following counts:

v The total labels processed, including system labels

v The labels processed, where the qualifier was not binary zeros and was
appended to the existing label

Attention: If a conversion program run ends prematurely, the results of the job
are unpredictable. You should not read a CKDS involved in the conversion into
storage for use. For a description of the conversion program return codes, see the
explanation of message CSFV0026 in z/OS ICSF Messages.

When you run the conversion program, the program produces information about the
conversion in an activity report. The activity report lists each record with a changed
label and any error messages. The activity report also lists the data sets that were
used in the conversion and a summary of processing. The summary of processing
contains totals of the number of records that were processed and the number of
labels that were changed.

62 z/OS V1R3.0 ICSF System Programmer’s Guide

Figure 4 is an example of an activity report with two changed label conversions.

In this example, ICSF converted 153 CKDS records. Two of the Version 1 Release
1 records contain nonzero qualifier fields, so the conversion program changed the
labels for these records. The report shows the new labels. In this conversion, a
Version 1 Release 1 record with a label of DAVE001 and a type of PINGEN
contained the nonzero qualifier field X'1993111200000000'. The resulting OS/390
ICSF label and type for this record are DAVE001.1993111200000000 PINGEN.
Similarly, the Version 1 Release 1 EXPORTER key with the label EXPN0E and a
qualifier field of X'1993111200000000' was converted to
EXPN0E.1993111200000000. You can use the KGUP RENAME verb to rename
these changed labels to a valid 64-byte label.

After listing the changed key labels, the activity report lists the data sets the
conversion program used in the conversion. ICSFR1.HCRP100.CKDS is the
Version 1 Release 1 CKDS the program converted. ICSFO4.HCRP210.CKDS is the
output z/OS ICSF CKDS where the conversion program placed the converted
entries.

The activity report ends with the conversion processing completed message and a
return code.

Migrating from 4753-HSP
ICSF provides key management callable services that are identical to the 4753-HSP
verbs of the same name. Key management applications that are developed for the
4753-HSP and use these common verbs can be run on OS/390 ICSF or z/OS ICSF
without reassembly. You will, however, need to relink them.

If your installation is currently using the 4753-HSP and you are migrating to OS/390
ICSF or z/OS ICSF, consider the following:

v 4753-HSP cryptographic key storage

Internal key tokens for ICSF and the 4753-HSP are not interchangeable. Key
token migration for the 4753 exists through the optional TKE Version 3
Workstation. TKE Version 3 supplies a 4753 Migration Utility. It allows you to
migrate internal DES key tokens from the 4753 to ICSF. Key exchange between
the two systems is through the external key token. To migrate keys from the
4753-HSP to ICSF, you must first establish an exporter/importer key relationship
between the 4753-HSP and ICSF. You can then write an application to export
keys from the 4753-HSP key storage and import them into the ICSF CKDS. You
can perform this type of key exchange only with CCA-defined keys, which have
the same control vectors on key-encrypting keys. If your 4753-HSP installation

CRYPTOGRAPHIC CONVERSION ACTIVITY REPORT DATE: 2001/06/01 (YYYY/MM/DD) TIME: 10:13:09 PAGE: 1
>>>CSFV0402 DAVE001.1993111200000000 PINGEN CREATED FROM A RELEASE 1 RECORD WITH A NON-ZERO QUALIFIER FIELD.
>>>CSFV0402 EXPN0E.1993111200000000 EXPORTER CREATED FROM A RELEASE 1 RECORD WITH A NON-ZERO QUALIFIER FIELD.
>>>CSFV0012 CONVERSION PROCESSING COMPLETED. RETURN CODE = 0.

CKDS DDNAME Dataset Name
------------ -------------
CSFVSRC ICSFR1.HCRP100.CKDS
CSFVNEW ICSFO4.HCRP210.CKDS

Total number of CKDS record conversions processed = 153
Total number of modified label conversions processed = 2

Figure 4. Example of a Version 1 Release 1 to ICSF z/OS Conversion Activity Report

Chapter 4. Migration from Previous Releases of ICSF 63

includes non-CCA key types in key storage, you need to generate a special
exporter/importer key-encrypting key pair on the 4753-HSP. The exporter
key-encrypting key nullifies the CV value that is used on the 4753-HSP, and the
importer key-encrypting key includes the CV value that is needed at ICSF.

v Callable Services

If you are migrating to OS/390 V2 R10 ICSF, the following differences should be
considered. For more information on individual callable services, refer to z/OS
ICSF Application Programmer’s Guide, SA22-7522.

– Clear Key Import - This service produces an internal DATA token with a
control vector usable on the Cryptographic Coprocessor Feature. If a valid
internal token is supplied as input to the service in the target key_identifier
field, that token’s control vector will not be used in the encryption of the clear
key value.

– Control Vector Generate - supports a subset of the TSS control vector
key-usage keywords.

– Control Vector Translate - if the kek_key_identifier parameter is specified as a
label, and the identified token has a key type of IMPORTER or EXPORTER,
then the label must be unique in the CKDS.

– Clear PIN Generate Alternate, Clear PIN Generate and Encrypted PIN Verify
do not provide support for the GBP-PINO calculation method when these
services are routed to the PCI Cryptographic Coprocessor for execution.

– Data Key Import - Data Key Import does not support direct write of the target
token to the ICSF CKDS.

– Key Generate - will not support the following key_type_1 and key_type_2
combinations for any key_form.
CIPHER CIPHERXI
CIPHER CIPHERXL
CIPHER CIPHERXO
DECIPHER CIPHERXO
ENCIPHER CIPHERXI
CIPHERXI CIPHER
CIPHERXL CIPHER
CIPHERXO CIPHER
CIPHERXO DECIPHER
CIPHERXI ENCIPHER
CIPHERXL CIPHERXL
CIPHERXI CIPHERXO
CIPHERXO CIPHERXI
DATAXLAT Null-CV

In addition, the following key_type_1 and key_type_2 combinations which are
supported by 4753 have slightly different support with OS/390 V2 R10 ICSF.
These pairs will be supported only for the OPEX, EXEX, and IMEX key forms,
and the only allowable control vectors will be those supported by the
Cryptographic Coprocessor Feature.
DATA DATAXLAT
DATAXLAT DATAXLAT

Key Generate does not support direct write of the target token to the ICSF
CKDS.

– Key Import - Key Import does not support direct write of the target token to
the ICSF CKDS.

– Key Token Build - Key types ADATA, AMAC, CIPHERXI, CIPHERXL,
CIPHERXO, UKPTBASE are not supported. Rule array keywords KEY-REF,
ADAPTER, READER, CARD, ACTIVE, INACTIVE, CLEAR-IV, NO-IV, CBC,

64 z/OS V1R3.0 ICSF System Programmer’s Guide

X9.23, IPS, CUSP, X9.9-1, MACLEN4, MACLEN6, and MACLEN8 are not
supported. The master_key_verification_number parameter has been replaced
by the master_key_version_number parameter. The
master_key_version_number parameter is examined only if the KEY keyword
is specified, and in this case must be zero. If KEY and INTERNAL are both
specified in the rule array, the service will check for the existence of the rule
array keyword MKVP. If MKVP is specified, the service will make use of the
last parameter specified. The key_register_number, secure_token, and
initialization_vector parameters are ignored. The pad_character parameter
must have a value of zero.

– Multiple Clear Key Import - This service produces an internal DATA token with
a control vector usable on the Cryptographic Coprocessor Feature. If a valid
internal token is supplied as input to the service in the target key_identifier
field, that token’s control vector will not be used in the encryption of the clear
key value.

– PKA Key Token Build - RSA-OPT rule array keyword is not supported.
Optimized (Chinese Remainder Theorem) RSA keys are built using the
RSA-CRT rule array keyword.

– PIN services do not support the OEM-1 PIN block format.

– Prohibit Export service - does not support DATA, MAC, or MACVER keys
which have standard control vectors (for example, control vectors supported
by the Cryptographic Coprocessor Feature).

Prohibit Export does not support direct write of the target token to the ICSF
CKDS.

– Secure Key Import - does not adjust key parity or support double-length DATA
keys. Use the Multiple Secure Key Import service to process double-length
DATA keys.

– It is not possible to migrate use of CIPHER keys from the 4753. CIPHER key
types are not supported on the Cryptographic Coprocessor Feature.

– CVARPINE key can be built, generated, imported, or exported. They cannot
be used since the Encrypted PIN Generate Alternate service is not supported.

– The following CCA services are not supported by ICSF:

- Key Record List

- Key Token Change

- Key Token Parse

- Clear PIN Verify

- Cryptographic Variable Decipher

- Encrypted PIN Generate Alternate

– Support for the following key types is not supported by ICSF: ACIPHER,
ADATA, AMAC, CIPHERXI, CIPHERXL, CIPHERXO, and UKPTBASE.

– Support for the UDF/UDP control vector bit is not supported by ICSF.

– Chinese Remainder Theorem optimized key tokens with private key section
identifier of X'05' are not supported by OS/390 V2 R10 ICSF. ICSF supports
CRT tokens with a private key section identifer of X'08'.

– If PBVC is specified in the format control parameter of the PIN profile for the
Clear PIN Generate Alternate service, the PIN Translate service, or the
Encrypted PIN Verify service, only control vectors and extraction methods
valid for the Cryptographic Coprocessor Feature may be used.

– Key management services such as Key Generate, Key Import, Data Key
Import, and Prohibit Export do not support direct write of the target key token
to the ICSF CKDS.

Chapter 4. Migration from Previous Releases of ICSF 65

– During initialization of a PCI Cryptographic Coprocessor, an Environment
Identification, or EID, of zero will be set in the card. This will be interpreted by
the PKA Symmetric Key Import service to mean that environment identification
checking is to be bypassed. Thus, it is possible for a key-encrypting key
RSA-enciphered at a node (EID) to be imported at the same node.

v Key labels

ICSF/MVS Version 1 Release 2 and above supports an extended key label of up
to 64 bytes. Although the 4753-HSP also supports a 64-byte key label, there are
additional key label formatting restrictions that do not apply to ICSF. The
4753-HSP key label consists of one to five name tokens that are separated by
periods. Each name token includes one to eight alphanumeric or national string
characters. ICSF, therefore, can accept all 4753-HSP key labels, but the
4753-HSP cannot accept all ICSF key labels. For more information on key label
formatting restrictions, refer to IBM Transaction Security System: Concepts and
Programming Guide: Volume I, Access Controls and DES Cryptography.

ICSF/MVS Version 1 Release 2 and above, like the 4753-HSP, requires unique
key labels for data-encrypting keys, data-translation keys, and MAC keys. To
maintain compatibility with ICSF/MVS Version 1 Release 1, however, KGUP will
continue to allow multiple key types per label for importer, exporter, and PIN keys
under the following conditions. Use either KGUP or the KEU to enter the keys,
and ensure that the key labels do not conflict with other unique label restrictions.

v UDX (User Defined Extension) support

Beginning with OS/390 V2 R10 ICSF, ICSF support is provided for UDX
capabilities. UDX routines are developed by special contract with IBM and are
only distributed to authorized customers.

The UDX function is invoked by a ″installation-defined″ or generic callable
service. The callable service is defined in the Installation Options data set (UDX
parameter) and the service stub is link-edited with the application. The
application program calls the service stub which accesses the UDX
installation-defined service. There is a one-to-one correspondence between a
specific generic service in ICSF and a specific UDX command processor in the
PCI Cryptographic Coprocessor. The administrator, through ISCF panels,
performs UDX authorization processing on each PCI Cryptographic Coprocessor.
Authorization is not LPAR specific. See z/OS ICSF Administrator’s Guide,
SA22-7521, for additional information on authorizing User Defined Extensions.

Beginning in z/OS V1 R2, support for writing your own UDX has been added.
See the UDX Reference and Guide and the 4758 Custom Software Developer’s
Toolkit Guide for additional information. These, and other publications related to
the IBM 4758 Coprocessor can be obtained in PDF format from the Library page
located at http://www.ibm.com/security/cryptocards.

See z/OS ICSF System Programmer’s Guide, SA22-7520, for details on
installation-defined callable services and a description of the UDX parameter in
the installation options data set.

66 z/OS V1R3.0 ICSF System Programmer’s Guide

Chapter 5. Compatibility and Coexistence of 4753-HSP and
ICSF

The Transaction Security System products provide a range of cryptographic
facilities. These facilities can be implemented throughout an organization using a
compatible set of services at both workstation and host locations. One component
of the Transaction Security System is the channel-attached IBM 4753 Network
Security Processor (NSP) and its supporting software. The 4753 NSP can be
installed at the IBM System/370, IBM System/OS/390 MVS or OS/390 host
locations. The IBM Network Security Processor Support Program (referred to as
4753-HSP) provides host software support for the 4753 NSP. The Network Security
Processor Control Program runs in the IBM 4753 NSP and processes encryption
requests that are received from the host. If your installation is currently using
4753-HSP, you can either add ICSF and the Cryptographic Coprocessor Feature to
your OS/390 host (where it can coexist with 4753-HSP) or migrate to ICSF. For
more information about the Transaction Security System products, refer to IBM
Transaction Security System: General Information Manual and Planning Guide.

Because both 4753-HSP and ICSF support the CCA, applications developed to run
with 4753-HSP may run with ICSF without recompiling if they contain common
verbs.

This chapter gives a brief overview of 4753-HSP and ICSF coexistence
considerations. See “Migrating from 4753-HSP” on page 63 for migration
considerations.

Running 4753-HSP and ICSF on the Same z/OS System
Although the 4753-HSP and ICSF can coexist in the same z/OS environment on a
logical partition of a S/390 or z/OS complex, some restrictions apply.

Both systems can run simultaneously in noncompatibility mode. However, because
both systems support the CCA API, they use the same verbs to call cryptographic
services. For this reason, you must link your applications with the appropriate library
routines to ensure that they are routed to the correct system. Use 4753-HSP stubs
to link applications that are intended for 4753-HSP. Use ICSF stubs in
SYS1.SCSFMOD0 to link applications that are intended for ICSF.

Both ICSF and 4753-HSP are capable of running CUSP/PCF compatibility mode,
but only one system can provide this service at a time. Use of compatibility mode is
effectively serialized by ownership of the CVTCCVT field.

The two systems use the external key token for key exchange. Internal key tokens
are not interchangeable between 4753-HSP and ICSF, and each system uses
different control vectors internally for data keys.

Generally, 4753-HSP provides additional function for a given service call. Be sure to
use the common subset of services when an application operates with both of the
systems. (Concurrent use of 4753-HSP and ICSF is beyond the scope of this book.)

z/OS ICSF supports a PKA implementation that differs from the Transaction
Security System PKA implementation. The Transaction Security System supports
both PKA92 and PKA96 versions. Applications that are written to one PKA version
will not run on the other PKA version. Because ICSF does not support PKA92,

© Copyright IBM Corp. 1997, 2002 67

4753-HSP techniques that use RSA keys that have been implemented in PKA92 for
DES key distribution are incompatible with ICSF applications. For PKA96, APIs are
the same for services that ICSF and the 4753-HSP have in common. With the
addition of RSA key support in the PKA Generate function, it becomes easier for the
PKA96 to move to ICSF. The main difference is that the 4753-HSP does not
support the Digital Signature Standard (DSS). RSA digital signatures that use
ISO9796 formatting can be exchanged between the two products.

68 z/OS V1R3.0 ICSF System Programmer’s Guide

Chapter 6. Installation-Defined Callable Services

This chapter contains Programming Interface information.

ICSF provides callable services that perform cryptographic functions. For example,
the ICSF encipher callable service enciphers data. You call and pass parameters to
a callable service from an application program. See z/OS ICSF Application
Programmer’s Guide for a description of the ICSF callable services.

Besides the callable services that ICSF provides, you can write your own callable
services; these are known as installation-defined callable services.

Attention: Only an experienced system programmer should attempt to write an
installation-defined callable service. The writing and installation of such a service
require a thorough knowledge of system programming in an z/OS environment. If,
without having this knowledge, you attempt to write or to install installation-defined
callable services, you run the risk of seriously degrading the performance of your
system and causing complete system failure.

To write an installation-defined callable service, you must first write the callable
service and link-edit it into a load module. Then define the service in the installation
options data set. Use the SERVICE installation option keyword to specify a number
to identify the service and the load module that contains the service.

You must also write a service stub. To run an installation-defined callable service,
you call a service stub from your application program. The service stub connects
the application program with the installation-defined callable service. In the service
stub, you specify the service number that identifies the callable service.

During ICSF startup, ICSF loads the load module that contains the service into the
ICSF address space with the ICSF callable services. ICSF binds the service with
the service number that you specified in the installation options data set.

This chapter describes how to perform the following tasks:
v Write a callable service.
v Define a callable service.
v Write a service stub.

Writing a Callable Service
An installation-defined callable service receives parameters from the application
program when the program calls the service stub that is associated with the service.
An installation-defined service can also access information in the secondary
parameter block (SPB). The address of the SPB is passed in register 0. See “The
Secondary Parameter Block” on page 94 for a description of the SPB.

The service receives control with the following characteristics.
v Supervisor state
v Key 0
v APF authorized
v TCB or SRB mode
v Cross memory mode
v AR mode
v AMODE(31)
v RMODE(ANY)

© Copyright IBM Corp. 1997, 2002 69

The service can change the characteristics during their processing. However, the
service must return to its caller with the same characteristics as on entry.

You must write the services in assembler, because you are in Access Register and
cross memory mode, and the addresses of some of the parameters you may
access are ALET-qualified. In particular, parameters passed into a callable service
are in the user’s address space, which you can access with an ALET of 1. See
z/OS MVS Programming: Extended Addressability Guide for information about cross
memory and AR mode.

Contents of Registers
The contents of the registers on entry to the callable service are:
Register 0 Address of the secondary parameter block (SPB)
Register 1 Address of the parameter list
Register 2–13 Unpredictable
Register 14 Return address
Register 15 Service entry point address

The contents of the registers on exit from the callable service are:
Register 0 Reason code
Register 1–14 Same as on entry
Register 15 Return code

Figure 5 shows an example of entry and exit code for a generic service.

The example uses the instructions BAKR and PR to replace standard linkage. With
these instructions, you no longer need to pass the save area in a register.

If the callable service ends abnormally, ICSF takes a system dump. The ICSF
service functional recovery routine (FRR) PROTECTS an installation-defined
service. You can, however, write your own recovery routine.

MYSERV CSECT
MYSERV AMODE 31
MYSERV RMODE ANY

USING *,15
B PROLOG Branch around header text
DC C’some text’
DC C’compile date/time’

PROLOG EQU *
DROP 15
BAKR 14,0 Save callers info on stack
LAE 12,0 Clear access register 12
LR 12,15 Load reg 15 into 12

PROGSTRT EQU *
USING MYSERV,12 Set up base register

* addressability
.
.
.
Get dynamic area for program
.. STORAGE OBTAIN or CELLPOOL or own scheme ...
.
.

RETURN L 0,REASON_CODE Put reason code in reg 0
L 15,RETURN_CODE Put return code in reg 15
PR

Figure 5. Example of a Service Entry and Exit

70 z/OS V1R3.0 ICSF System Programmer’s Guide

Checking the Parameters
For the ICSF-defined services, ICSF checks the integrity of user-passed
parameters. An error in a parameter that causes a system abend does not cause a
system dump. For an installation-defined callable service, you must perform your
own integrity checking of parameters. An error in a user parameter that results in a
system abend causes a system dump. You can suppress the system dump by
setting a bit on in the SPB. To suppress the dump, set the bit on before you check
the integrity of the parameters. This bit (the SPBTERM bit) is the third bit of the flag
byte at offset 16 in the SPB.

Link-Editing the Callable Service
After you write the callable service, you need to link-edit it into a load module, and
install the load module into an APF authorized library. ICSF uses the following
normal search order to locate the service:
v Job pack area
v Steplib (if one exists)
v Link pack area (LPA)
v Link list (SYS1.LINKLIB concatenation)

Defining a Callable Service
Use the SERVICE keyword in the installation options data set to specify information
about the callable service. ICSF uses this information at ICSF startup to enable the
service. See “Create the Installation Options Data Set” on page 12 for more
information about ICSF installation options.

The SERVICE keyword has the following syntax:
SERVICE(service-number,load-module-name,FAIL(fail-option))

The service-number is a number that identifies the service to ICSF. The valid
service numbers are 1 through 32767, inclusive. The load-module-name is the
name of the module that contains the service your installation wrote. During ICSF
startup, ICSF loads the module and binds it to the service number you specified.

Using the fail-option, you specify the action ICSF takes if the loading of the service
ends abnormally. ICSF loads all installation-defined services at ICSF startup.

Specify one of the following values for the fail-option:

YES ICSF abends if your service cannot be loaded.

NO ICSF continues to start if your service cannot be loaded.

If the callable service ends abnormally while it is processing, ICSF does not end.

The following SERVICE installation option statement identifies a specific
installation-defined service to ICSF:

SERVICE(50,KSUST,FAIL(NO))

When ICSF starts, it binds the service number 50 to the load module KSUST, which
contains the callable service you wrote. Because the fail option is NO, if your
service cannot be loaded, ICSF continues to start anyway.

Chapter 6. Installation-Defined Callable Services 71

Writing a Service Stub
Besides writing the callable service itself, you must write a service stub, which is
the connection between the application program and the installation-defined service.
In an application program, you call the service stub, which accesses the
installation-defined service. The service stub can be any name you choose to call it.

The service stub must do the following:

v Check that ICSF is active.

v Place the service number for the installation-defined callable service into register
0.

v Call the IBM-supplied processing routine, CSFAPRPC.

CSFAPRPC is used to access the callable services on ICSF. In the service stub,
you must call CSFAPRPC. ICSF stores the address of the CSFAPRPC entry point
in the CCVTPRPC field of the ICSF cryptographic communication vector table
(CCVT). After you call CSFAPRPD, the system calls the callable service that
corresponds to the service number in register 0. The Cryptographic Communication
Vector Table (CCVT) on page 157 describes the format of the CCVT.

The contents of the registers on entry to the service stub are:
Register 0 Unpredictable
Register 1 Address of the parameter list
Register 2–13 Unpredictable
Register 14 Return address
Register 15 Service stub entry point address

The contents of the registers on exit from the service stub are:
Register 0 Reason code
Register 1–14 Same as on entry
Register 15 Return code

To run an installation-defined callable service, an application program calls the
service stub. You must link-edit the service stub with the application program that
calls the service stub. Any application program that calls a service stub must be
link-edited with the service stub.

To call an installation-defined service from an application program, use the following
statement:

CALL <service-stub-name> <service-parameters>

The service-stub-name is the name of the service stub for the installation-defined
callable service. The service-parameters are the parameters you want to pass to
the installation-defined service. You supply the parameters according to the syntax
of the programming language that you use to write the application program.

Figure 6 on page 73 shows an example of a service stub for an installation-defined
callable service.

72 z/OS V1R3.0 ICSF System Programmer’s Guide

**** START OF SPECIFICATIONS ***
* *
* MODULE NAME = CSFGEN *
* DESCRIPTIVE NAME = SERVICE STUB *
* *
* FUNCTION = *
* THIS IS A SAMPLE SERVICE STUB. IT IS MEANT TO BE LINKEDITED *
* WITH THE APPLICATION AND ENTERED VIA A CALL CSFGEN. THIS STUB *
* CAUSES THE EXECUTION OF THE SERVICE WITH SERVICE NUMBER = 50 *
* (DECIMAL). *
* MODULE TYPE = ASSEMBLER *
* PROCESSOR = ASSEMBLER *
* MODULE SIZE = ONE BASE REGISTER *
* *
**** END OF SPECIFICATIONS ***
CSFGEN START 0

IHAPSA
TITLE ’DSECT CVT’
CVT DSECT=YES
TITLE ’DSECT SCVT’
IHASCVT DSECT=YES
TITLE ’DSECT CCVT’
CSFCCVT
TITLE ’CSFGEN - CSF TEST GENERIC SERVICE STUB’
SPACE 1

R0 EQU 0
R1 EQU 1
R2 EQU 2
R3 EQU 3
R4 EQU 4
R5 EQU 5
R6 EQU 6
R7 EQU 7
R8 EQU 8
R9 EQU 4
R10 EQU 10
R11 EQU 11
R12 EQU 12
R13 EQU 13
R14 EQU 14
R15 EQU 15

Figure 6. Example of a Service Stub (Part 1 of 2)

Chapter 6. Installation-Defined Callable Services 73

In Figure 6 on page 73, the service stub, CSFGEN, checks that ICSF is active,
places the service number 50 into register 0, and calls CSFAPRPC.

The service number 50 must be bound to the installation-defined service by using
the SERVICE keyword in the installation options data set. The service number is
bound to the service when ICSF interprets the SERVICE installation option
statement and loads the service at ICSF startup. To run the callable service that is
associated with service number 50, call the service stub CSFGEN from an
application program.

For flexibility, to create a service stub for a different installation-defined callable
service, you can copy an existing service stub and just change the service number
that you load into register 0.

CSFGEN CSECT ,
BAKR R14,R0 SAVE REGISTERS AND STATUS
LR R12,R15
USING CSFGEN,R12 SET UP CSECT ADDRESSABILITY
B LITREND
DC CL8’CSFGEN ’
DC CL8’&SYSDATE’
DC CL8’&SYSTIME’

*
LITREND DS 0H

L R2,CVTPTR GET CVT POINTER
USING CVT,R2
L R3,CVTABEND AND SECONDARY CVT POINTER
USING SCVTSECT,R3
L R4,SCVTCCVT POINT TO CSF CCVT
LTR R4,R4 IS CRYPTO INSTALLED?
BZ NOTTHERE IF NOT, GO HOME
USING CCVT,R4
TM CCVTSFG1,B’00110000’ IS ICSF ACTIVE
BNO NOTTHERE IF NOT , GO HOME

PRPC LA R0,50 SERVICE NUMBER DECIMAL 50
L R15,CSFAPRPC GET ENTRY FOR APRPC
BALR R14,R15 AND BRANCH ENTER IT

RETURN PR RETURN TO CALLER
NOTTHERE LA R15,12 SET FAILING RETURN CODE

LA R0,0 STORE REASON CODE IN REGISTER 0
L R2,0(,R1) POINT R2 AT RETURN CODE PARAMETER
MVC 0(4,R2),=F’12’ MOVE 12 TO RETURN CODE PARAMETER
L R2,4(,R1) POINT R2 AT REASON CODE PARAMETER

MVC 0(4,R2),=F’0’ MOVE 0 TO REASON CODE PARAMETER

PR AND RETURN
LTORG ,
END

Figure 6. Example of a Service Stub (Part 2 of 2)

74 z/OS V1R3.0 ICSF System Programmer’s Guide

Chapter 7. Installation Exits

Your installation can define exit routines to supplement the Integrated Cryptographic
Service Facility (ICSF), the key generator utility program (KGUP), and the
CUSP/PCF conversion program. Exit routines are programs that programmers at
your installation write to allow you to “customize” an application. Your installation
may need to perform specific functions with the data that your cryptographic
application manipulates. At various points in processing, ICSF, KGUP, and the
CUSP/PCF conversion program release control to an exit routine.

Some common uses for installation exits include:
v Identifying and verifying users
v Accessing alternate data sets
v Manipulating input commands
v Manipulating output data

This chapter describes the various types of exit points in ICSF and the functions
that your exits can perform.

Attention: Only an experienced system programmer should use the ICSF
installation exits. Writing an exit routine and installing a new exit are tasks that
require a thorough knowledge of system programming in an OS/390 and z/OS
environment. An unknowledgeable programmer who attempts to write exit routines
or to install new exit points, runs the risk of seriously degrading the performance of
your system and causing complete system failure.

Types of Exits
ICSF provides several types of exit points:

v Exits that are called during initialization, stopping, and modification of ICSF itself,
which are known as the mainline exits

v Exits that are called from the callable services

v An exit called from the CUSP/PCF conversion program

v An exit called when you update the CKDS with a key that is entered through the
key entry hardware or during conversion program processing

v An exit called when records are retrieved from the in-storage CKDS

v Security exits that are called during initialization and stopping of ICSF, during a
call to a callable service, and when accessing a CKDS entry

v An exit called at various points during KGUP processing

The following sections briefly describe the different types of exits available in ICSF.

Note: Although IBM no longer supplies security exit routines, the exit points still
remain.

Mainline Exits
You can supply three exits that are called during ICSF initialization. You can also
define an exit routine to run after an operator issues the STOP command and
another exit to run after the MODIFY command. Thus, mainline exits can run at the
following five different points:
v Initialization points

– Before ICSF initialization

© Copyright IBM Corp. 1997, 2002 75

– After ICSF reads and interprets the installation options
– Before the completion of ICSF initialization

v When an operator issues a STOP ICSF command
v When an operator issues a MODIFY ICSF command

You can use a mainline exit to alter values in the Cryptographic Communication
Vector Table, to end ICSF, or to change ICSF installation options. For more
information about the mainline exits, see “Mainline Installation Exits” on page 80.

Exits for the Callable Services
Each of the callable services in ICSF calls an exit before and after processing. z/OS
ICSF Application Programmer’s Guide describes the callable services in greater
detail.

You can use a callable service exit to change, augment, or replace processing or to
bypass the IBM-supplied processing for the service entirely. “Callable Services
Installation Exits” on page 87 gives further details about exits for the callable
services.

The CUSP/PCF Conversion Program Exit
The CUSP/PCF conversion program changes a CKDS from CUSP/PCF to ICSF
CKDS format. See Chapter 3, “Migration from CUSP/PCF to z/OS ICSF” on
page 31 for more information about the conversion program.

ICSF provides three exit points for the same exit routine:
v During the initialization of the conversion program
v While the conversion program is processing individual records
v During the ending of the conversion program

See “CUSP/PCF Conversion Program Installation Exit” on page 99 for more
information about the conversion program installation exit (CSFCONVX).

The Single-record, Read-write Exit
Certain ICSF processes read records from or write records to the CKDS. These
processes include running a conversion program, refreshing and reenciphering the
CKDS, and using the key entry hardware to enter a key. When these processes
read or write CKDS records, they call the exit. You can customize the processing of
a CKDS record read-write with the single-record, read-write exit (CSFSRRW). See
“Single-record, Read-write Installation Exit” on page 102 for more information about
the single-record, read-write exit.

When application programs write records to or read records from the PKDS, ICSF
calls the single-record, read-write exit.

The Cryptographic Key Data Set Entry Retrieval Exit
You can use certain callable services to manage keys on ICSF. A callable service
can access a key in the in-storage CKDS by specifying a key label. For more
information about the callable services, see z/OS ICSF Application Programmer’s
Guide.

When a callable service requests a record from the in-storage CKDS by label, ICSF
calls the CKDS entry retrieval exit. For instance, you can use this exit to perform a

76 z/OS V1R3.0 ICSF System Programmer’s Guide

specific search of the installation data field in the record. See “Cryptographic Key
Data Set Entry Retrieval Installation Exit” on page 96 for more information about the
CKDS entry retrieval exit.

Security Exits
You can supply four different exits to control access to resources on ICSF. ICSF
calls the security exits at the following points:
v During CSF initialization
v During CSF termination
v When an application calls an ICSF callable service
v When an entry in the in-storage CKDS is accessed

See “Security Installation Exits” on page 105 for more information about the security
exits.

The KGUP Exit
You use KGUP to generate and maintain keys in the CKDS. KGUP creates key
values that systems can use in key exchanges. The ICSF administrator uses job
control language to start KGUP,and specifies information to KGUP through the use
of a control statement.

As opposed to the five different mainline exits, ICSF provides one exit for KGUP
processing that is called at four different points. ICSF calls the KGUP exits at the
following points:
v During KGUP initialization
v Before KGUP processes a key that is identified by a control statement
v Before KGUP updates the CKDS
v During KGUP termination

The KGUP exit receives a parameter that identifies the exit’s calling point. Thus, the
installation exit can perform different functions at each of the calls.

You can use the KGUP exit to change key values, make a copy of a CKDS entry, or
end KGUP. “Key Generator Utility Program Installation Exit” on page 109 gives a
more detailed description of the KGUP exit.

Entry and Return Specifications
All of the exits described in “Types of Exits” on page 75 use standard linkage
conventions on entry and return from the exits.

Registers at Entry
The mainline exits have the following register contents on entry:

Register Contents

0 Address of the exit parameter block (EXPB)

1 Address of a parameter list

2–12 Not applicable

13 Address of register save area

14 Return address

15 Entry point address

Chapter 7. Installation Exits 77

The callable service exits have the following register contents on entry:

Register Contents

0 Address of the exit parameter block (EXPB)

1 Address of a parameter list

2–13 Not applicable

14 Return address

15 Entry point address

The CKDS entry retrieval installation exit has the following register contents on
entry:

Register Contents

0 Not applicable

1 Address of a parameter list

2–12 Not applicable

13 Address of register save area

14 Return address

15 Entry point address

The conversion program, single-record, read-write, and KGUP exits have the
following register contents on entry:

Register Contents

0 Not applicable

1 Address of a control block (CVXP, RWXP, or KGXP, depending on
the exit)

2–12 Not applicable

13 Address of register save area

14 Return address

15 Entry point address

The particular control blocks that are passed through register 0 or register 1 are
described with each exit.

Registers at Return
Registers for all exits must contain the original contents on entry with the exception
of register 15 which must contain a valid return code. See each exit for a list of
valid return codes. The registers should contain the following information on return.

Register Contents

0–14 Same as entry contents

15 Valid return code

Exits Environment
ICSF calls different types of exits in distinct environments. The exits differ regarding
the mode in which they run and how they address data.

78 z/OS V1R3.0 ICSF System Programmer’s Guide

Mainline Exits
ICSF mainline exits run in task mode in the ICSF address space. All the passed
storage pointers specify addresses in the ICSF address space and are not ALET
qualified. There are essentially no restrictions on the use of z/OS services for these
exits.

Callable Service Exits
ICSF calls the callable service exits in cross memory mode after a space switch
PC. The exits run in the ICSF address space, which is the primary address space.
The exits need to address parameters in the caller’s address space, which is the
secondary address space. In general, user-passed parameters, including the
parameter list itself, are in the secondary address space. An exit that is running in
access register (AR) mode using an ALET of 1 can access these parameters. For
information about cross memory mode and AR mode, see z/OS MVS Programming:
Extended Addressability Guide.

CKDS Entry Retrieval Exit
The exit runs in cross memory mode. The addresses of the CKDS records that are
used by the exit are ALET-qualified. The exit receives both the current CKDS record
address and the record’s associated ALET as parameters in the exit parameter list.
The exit must run in AR mode, and must use the information passed in the exit
parameter list to access CKDS entries. For information about cross memory mode
and AR mode, see z/OS MVS Programming: Extended Addressability Guide.

KGUP, Conversion Programs, and Single-record, Read-write Exits
The exits run in task mode in the caller’s home address space. The exits do not run
in cross memory mode and are not passed ALET-qualified storage pointers. There
are essentially no restrictions on the use of z/OS services for these exits.

Security Exits
The initialization and termination security exits run in task mode in the ICSF
address space. The passed storage pointers specify an address in the ICSF
address space and are not ALET-qualified. There are essentially no restrictions on
the use of z/OS services for these exits.

ICSF calls the security service exit and the security keys exit in cross memory
mode after a space switch PC. The security service exit runs in the ICSF address
space, which is the primary address space. The security key exit runs in cross
memory and AR mode.

Exit Recovery
An ESTAE routine provides recovery for the mainline exits; the single-record,
read-write exit; and the security initialization and termination exits. If an exit ends
abnormally, the ESTAE routine intercepts the abnormal ending code and schedules
a system dump. If the conversion program exit ends abnormally, the conversion
program ends abnormally. If the KGUP exit ends abnormally, KGUP also ends
abnormally. ESTAE routines provide recovery for the conversion program and
KGUP.

Chapter 7. Installation Exits 79

The ICSF Functional Recovery Routine (FRR) provides recovery for the callable
service exits, the CKDS entry retrieval exit, and the security service and key exits. If
an exit ends abnormally, the FRR intercepts the abnormal ending code and
schedules a system dump.

There are times during ICSF processing that ICSF suppresses dumps. For
example, ICSF does not schedule dumps when integrity checking user data. This
action avoids the possibility of user errors that can severely affect system
performance. However, ICSF does write a record to SYS1.LOGREC if the error
occurs.

When writing exits, you may also want to suppress dumps under certain
circumstances. You can suppress dumps by setting a bit on in the SPB. This bit, the
SPBTERM bit, is the third bit of the flag byte at offset 18 in the SPB. An exit might
want to suppress dumps whenever the exit writes user storage. The exit can turn
the bit on before the WRITE instruction and turn the bit off again after the
instruction.

Mainline Installation Exits
ICSF begins when an operator issues a START command from the operator
console. When ICSF issues this command, the initialization process begins.

After ICSF starts, operators can issue the MODIFY or STOP commands. You can
define installation exits to customize ICSF at the initialization, stopping, and
modification points.

Purpose and Use of the Exits
ICSF calls the mainline exits during the startup, modification, and shutdown stages.
The exits allow your installation to change the initialization options, issue special
messages, and bypass operator commands. Following is a description of each point
at which ICSF calls mainline exit routines.

CSFEXIT1
ICSF calls this exit after an operator issues a START command, but before any
processing takes place. You can use this exit to change the allocation of the
installation options data set.

ICSF always calls the exit. If this exit does not exist, ICSF continues normal
processing. If this exit exists, ICSF starts it.

CSFEXIT2
ICSF calls this exit during the initialization process after the installation options data
set is read and interpreted. You can use this exit to change certain installation
options.

CSFEXIT3
ICSF calls this exit just before ICSF initialization is complete. You can use this exit
to issue commands to start other cryptographic work.

CSFEXIT4
ICSF calls this exit when an operator issues a STOP command. You can use this
exit to decide to allow or disallow the STOP command.

CSFEXIT5
CSFEXIT5 receives the command input block (the string that is entered by the
operator), so you can customize CSFEXIT5 to perform any processing you require.

80 z/OS V1R3.0 ICSF System Programmer’s Guide

ICSF calls this exit when an operator issues a MODIFY command. ICSF provides
the MODIFY command exit to allow each installation the flexibility of defining its
own command. ICSF does no processing when an operator uses the MODIFY
command. The MODIFY command is simply a call to CSFEXIT5.

Environment of the Exits
The exits receive control with the following characteristics:
v Supervisor state
v Key 0
v APF-authorized
v TCB mode
v Address Space Control mode=access register mode
v AMODE(31)
v RMODE(ANY)

The exits can change the characteristics during their processing. However, the exits
must return to ICSF with the same characteristics as on entry.

Installing the Exits
Because ICSF calls CSFEXIT1 before any initialization occurs, the exit is not
defined in the same way as the other exits. For all the mainline exits, install the
load module that contains the exit into an APF-authorized library. ICSF uses the
following normal OS/390 search order to locate the exit:
v Job pack area
v Steplib (if one exists)
v Link pack area (LPA)
v Link list (SYS1.LINKLIB concatenation)

You must define CSFEXIT2, CSFEXIT3, CSFEXIT4, and CSFEXIT5 in the
installation options data set. However, you must not define CSFEXIT1 in the
installation options data set, and the load module name for the exit must be
CSFEXIT1.

To define the exits in the installation options data set, define the ICSF exit point
name and load module name on the EXIT keyword in the installation options data
set. For information about the installation options data set, see “Changing
Parameters in the Installation Options Data Set” on page 20. The EXIT keyword has
the following syntax:

EXIT (ICSF exit point name, load module name, FAIL (options))

The ICSF exit point name portion of the keyword refers to the ICSF name for each
exit, CSFEXIT2, CSFEXIT3, CSFEXIT4, and CSFEXIT5. The load module name is
the name of the load module that contains the exit. The name can be any valid
name your installation chooses. The FAIL portion of the EXIT keyword specifies the
action ICSF takes if the exit cannot be loaded. The valid FAIL options are:
NONE Initialization continues even if exits cannot be loaded.
SERVICE Initialization continues even if exits cannot be loaded.
EXIT Initialization continues even if exits cannot be loaded.
ICSF End ICSF if exits cannot be loaded.

You must specify a FAIL option. If you do not, ICSF returns an error message,
abnormally ends, and generates an SVC dump when attempting to load the exit.

Chapter 7. Installation Exits 81

Input
All mainline exits receive the address of an exit parameter block (EXPB) passed in
register 0. Each exit receives the address of an address list passed in register 1.
Each address in the list points to a parameter.

Figure 7 illustrates the contents of register 0 and EXPB for the mainline exits.

Both the mainline exits and the callable services exits receive the address of EXPB
in register 0. Some of the fields in EXPB are used only by the callable service exits
and are reserved fields for the mainline exits.

The Exit Parameter Block
Table 3 describes the contents of the exit parameter block.

Table 3. EXPB Control Block Format for Mainline Exits

Offset (Dec)
Number of
Bytes Description

0 4 Name.

The name of the control block. This field contains the
character string EXPB.

4 2 Version.

The version of the control block. This field contains the
character string 01.

6 2 Length.

The length of the control block. The value of this field is 40 in
decimal.

8 4 Dynamic area address.

The address of a 400-byte area that the exit can use as a
dynamic area.

Register 0

EXPB EXPB

NAME

VERSION LENGTH

DYNAMIC AREA

DYNAMIC AREA

400 BYTES

8 BYTES

EXIT AREA
EXIT AREA

EXIT COMMUNICATION

RESERVED

RESERVED

CCVT
CCVT

. . .

. . .
MODULE NAME

Figure 7. EXPB Control Block for Mainline Exits

82 z/OS V1R3.0 ICSF System Programmer’s Guide

Table 3. EXPB Control Block Format for Mainline Exits (continued)

Offset (Dec)
Number of
Bytes Description

12 4 Exit area address.

The address of an 8-byte area the exits can use to
communicate with each other. ICSF does not check or
change this field.

16 4 Exit communication area.

A character string that can be used for communication
between the exits. The field is initialized to zero before
CSFEXIT1 is called, and ICSF does not modify this field.

20 4 Flags.

Reserved. The flag field is used only by the exits for the
callable services. The field contains binary zeros for the
mainline exits.

24 4 Secondary parameter block (SPB) address.

Reserved. The SPB is used only by the exits for the callable
services. The field contains binary zeros for the mainline
exits.

28 4 CCVT address.

Address of the Cryptographic Communication Vector Table
(CCVT). The Cryptographic Communication Vector Table
(CCVT) on page 157 describes the CCVT in greater detail.

32 8 Module name.

The installation exit’s load module name. The field contains
the value of the load module name you specified on the EXIT
keyword in the installation options data set. The field is 8
bytes of characters, and the value is left-justified and padded
with blanks.

Parameters
All mainline exits receive an address list that uses standard entry linkage. Register
1 points to the address list. Each address in the list points to a parameter. Tables in
the next four sections describe the parameters for each of the mainline exits.

CSFEXIT1: The following table describes the parameters for CSFEXIT1:

Table 4. CSFEXIT1 Parameters

Parameter
Number of
Bytes Description

1 8 The data set name (DDNAME) of the installation options
data set.

2 Variable The command input block for the START command. The
command control block is mapped by IEZCIB.

When ICSF calls this, the Cryptographic Communication Vector Table exists, but the
table is not yet complete.

Chapter 7. Installation Exits 83

CSFEXIT2 and CSFEXIT3: Both CSFEXIT2 and CSFEXIT3 receive the same
parameters. Table 5 describes these parameters.

Table 5. CSFEXIT2 and CSFEXIT3 Parameters

Parameter
Number of
Bytes Description

1 44 A character string that is the CKDS name specified in the
CKDSN installation option.

2 4 A decimal value that is the maximum length permitted for
data passed to callable services specified in the MAXLEN
installation option.

Beginning with z/OS V1 R2, the MAXLEN parameter may
still be specified in the options data set, but only the
maximum value limit will be enforced (2147483647). If a
value greater than this is specified, an error will result and
ICSF will not start.

3 4 ICSF environmental options.
Note: Do not change bits 2, 4, and 5.

Byte 1:

Bit Meaning When Set On

0 Special secure mode allowed.

1 Special secure mode enabled.

2 Reserved and must be zero.

3 Key authentication required.

4 The hardware has gone from active to
inactive.

5 First start of ICSF during this IPL.

6 Security Sever (RACF) checking
required for authorized callers.

7 PCF/CUSP coexistence.

Bytes 2–4: Reserved

4 4 Address of the exit name table. Table 7 on page 85
describes the exit name table.

CSFEXIT4 and CSFEXIT5: Both CSFEXIT4 and CSFEXIT5 receive the same
parameters. Table 6 describes these parameters.

Table 6. CSFEXIT4 and CSFEXIT5 Parameters

Parameter
Number of
Bytes Description

1 44 A character string that is the CKDS name specified in
the CKDSN installation option.

84 z/OS V1R3.0 ICSF System Programmer’s Guide

Table 6. CSFEXIT4 and CSFEXIT5 Parameters (continued)

Parameter
Number of
Bytes Description

2 4 A decimal value that is the maximum length permitted for
data passed to callable services specified in the
MAXLEN installation option.

Beginning with z/OS V1 R2, the MAXLEN parameter
may still be specified in the options data set, but only the
maximum value limit will be enforced (2147483647). If a
value greater than this is specified, an error will result
and ICSF will not start.

3 4 ICSF environmental options.
Note: Do not change bits 2, 4, and 5.

Byte 1:

Bit Meaning When Set On

0 Special secure mode allowed.

1 Special secure mode enabled.

2 Reserved and must be zero.

3 Key authentication required.

4 The hardware has gone from active to
inactive.

5 First start of ICSF during this IPL.

6 Security Server (RACF) checking
required for authorized callers.

7 PCF/CUSP coexistence.

Bytes 2–4: Reserved

4 4 Address of the exit name table. Table 7 describes the
exit name table.

5 Variable The command input block. You can use the IEZCIB
mapping macro to map the control block.

The Exit Name Table: The exit name table contains a list of all of the exits and
their load module names. Table 7 describes the format of the exit name table.

Table 7. Format of the Exit Name Table

Offset (Dec)
Number of
Bytes Description

0 4 Exit name table ID. The value is always the character
string ENT.

4 2 Exit name table version. The value is always the character
string 01.

6 2 Length of the exit name table. This value is in decimal.

8 4 Number of entries in the array which is the number of exits
ICSF supplies. This value is in decimal.

12 4 Subpool that the exit name table is in.

16 4 Reserved.

Chapter 7. Installation Exits 85

Table 7. Format of the Exit Name Table (continued)

Offset (Dec)
Number of
Bytes Description

20 4 Reserved.

24 4 Reserved.

28 4 Reserved.

32 8 ICSF exit name 1. This value is a character string.

40 8 Installation load module name 1. This value is a character
string.

48 4 Flags.

Flag bytes. Only the first two bytes are used; bytes 3 and
4 are reserved.

Byte 1:

Bit Meaning When Set On

0 Exit has been requested by the
installation.

1 Exit has been loaded.

2 Exit is active.

3 If exit fails, end ICSF.

4 If exit fails, do not call the exit again.

5 If exit fails, fail the service.

6 If exit fails, do nothing.

7 Exit has failed previously.

Byte 2:

Bit Meaning When Set On

0 The exit should be called.

1 The exit is available to the installation.

2 If the security exit fails, fail the service.

3–7 Reserved.

52 4 Address of the exit.

56 4 Reserved.

60 4 Reserved.

64 8 ICSF exit name 2. This value is a character string.

72 8 Installation load module name 2. This value is a character
string.

80 4 Flags.

See offset +48 for flag byte definitions.

84 4 Address of the exit.

88 4 Reserved.

92 4 Reserved.

86 z/OS V1R3.0 ICSF System Programmer’s Guide

...
...

x 8 ICSF exit name a.

x+8 8 Installation load module name a.

x+16 4 Flags.

See offset +48 for flags.

x+20 4 Address of the exit.

x+24 4 Reserved.

x+28 4 Reserved.

Return Codes
All mainline exits can pass back a return code in register 15. CSFEXIT1,
CSFEXIT2, and CSFEXIT3 support the following decimal return codes:

Return Code Description
0 Proceed with initialization.
16 End ICSF.

CSFEXIT4 supports the following decimal return codes:

Return Code Description
0 Proceed with the STOP command.
4 Do not allow the STOP command to proceed.

CSFEXIT5 supports the following decimal return codes:

Return Code Description
0 Continue processing.
4 End ICSF.

Any return codes other than those listed cause ICSF to end abnormally.

Callable Services Installation Exits
ICSF provides callable services that you can use to perform various cryptographic
functions. Examples of these functions include enciphering and deciphering data,
generating and verifying message authentication codes, generating and verifying
PINs, and dynamically updating the CKDS and PKDS. You can define an
installation exit for each of the callable services to customize processing. For a
detailed description of the callable services, see z/OS ICSF Application
Programmer’s Guide.

Use the following general format to request a callable service:
CALL CSNBxxx (

return_code
,reason_code
,exit_data_length
,exit_data
,parameter_5
,parameter_6

Chapter 7. Installation Exits 87

.

.

.
,parameter_N)

Table 8 on page 89 lists the ICSF exit names for each of the callable services. The
parameters that the application passes to a callable service are known as the
callable service parameter list, and the parameters vary from service to service.
“Parameters” on page 96 describes the callable services parameter lists in more
detail.

Purpose and Use of the Exits
Each of the callable services has an installation exit. Each installation exit for a
callable service has two exit points:

v The Preprocessing exit point. This exit point occurs after an application
program calls a callable service, but before the callable service starts processing.
For example, you can use this exit point to check or change the parameters that
the application passes on the call, or to end the call. You can also perform
additional security checks.

v The Postprocessing exit point. This exit point occurs after the callable service
has finished processing, but before the service returns control to the application
program. For example, you can use this exit point to check and change the
return code from the service or perform cleanup processing.

Environment of the Exits
The exits receive control with the following characteristics:
v Supervisor state
v Key 0
v APF-authorized
v TCB or SRB mode
v Cross memory mode
v AR mode
v AMODE(31)
v RMODE(ANY)

The exits can change the characteristics during their processing. However, the exits
must return to their caller with the same characteristics as on entry.

You must write the exits in assembler, because you are in AR and cross memory
mode and the addresses of some of the parameters you may access are
ALET-qualified. In particular, parameters passed into a callable service are in the
user’s address space which you can access with an ALET of 1. Additionally, the
CKDS entries are ALET-qualified, and the ALET itself is supplied as a parameter to
the CKDS retrieval exit.

For information about cross memory and AR mode, see z/OS MVS Programming:
Extended Addressability Guide.

Installing the Exits
You install an exit for a callable service by installing the load module that contains
the exit into an APF-authorized library. ICSF uses the following normal search order
to locate the exit:
v Job pack area
v Steplib (if one exists)
v Link pack area (LPA)

88 z/OS V1R3.0 ICSF System Programmer’s Guide

v Link list (SYS1.LINKLIB concatenation)

Define the ICSF name and the load module name as a value on the EXIT keyword
in the installation options data set. For more information about the installation
options data set, see “Changing Parameters in the Installation Options Data Set” on
page 20. The EXIT keyword has the following syntax:

EXIT (ICSF name, load module name, FAIL (options))

The ICSF name portion of the keyword refers to the ICSF name for each callable
service exit. Note that the ICSF name for each callable service exit is the same as
its CALLable name. Table 8 lists the ICSF names for each of the callable service
exits. Table 9 on page 91 lists the ICSF names for each of the compatibility service
exits. The load module name is the name of the load module that contains the
exit. The name can be any valid name that your installation chooses. The FAIL
portion of the EXIT keyword specifies the action ICSF takes if the exit cannot be
loaded or it ends abnormally. The valid FAIL options are:
NONE No action is taken. The exit can be called again and will end

abnormally again.
EXIT The exit is no longer available to be called again.
SERVICE The service or program that called the exit is no longer available to

be called again.
ICSF ICSF or the key generator utility program or the CUSP/PCF

conversion program is ended, depending on the exit.

You must specify a FAIL option. If you do not, ICSF returns an error message, ends
abnormally, and generates an SVC dump when attempting to load the exit. If the
exit ends abnormally, the service call fails regardless of the fail option you specified.
Fail options apply only to subsequent requests for the service.

Note: In the following table, CSFPKSC (PKSC interface) and CSFPCI (PCI
interface), are a part of the product-sensitive programming interface.

Table 8. Callable Services and Their ICSF Names

Callable Service ICSF Name

ANSI X9.17 EDC Generate CSFAEGN

ANSI X9.17 Key Export CSFAKEX

ANSI X9.17 Key Import CSFAKIM

ANSI X9.17 Key Translate CSFAKTR

ANSI X9.17 Transport Key Partial Notarize CSFATKN

Ciphertext Translate CSFCTT

Ciphertext Translate (with ALET) CSFCTT1

Clear Key Import CSFCKI

Clear PIN Encrypt CSFCPE

Clear PIN Generate CSFPGN

Clear PIN Generate Alternate CSFCPA

Control Vector Translate CSFCVT

Cryptographic Variable Encipher CSFCVE

Data Key Export CSFDKX

Data Key Import CSFDKM

Decipher CSFDEC

Chapter 7. Installation Exits 89

Table 8. Callable Services and Their ICSF Names (continued)

Callable Service ICSF Name

Decipher (with ALET) CSFDEC1

Decode CSFDCO

Digital Signature Generate CSFDSG

Digital Signature Verify CSFDSV

Diversified Key Generate CSFDKG

Encipher CSFENC

Encipher (with ALET) CSFENC1

Encode CSFECO

Encrypted PIN Generate CSFEPG

Encrypted PIN Translate CSFPTR

Encrypted PIN Verify CSFPVR

Key Export CSFKEX

Key Generate CSFKGN

Key Import CSFKIM

Key Part Import CSFKPI

Key Record Create CSFKRC

Key Record Delete CSFKRD

Key Record Read CSFKRR

Key Record Write CSFKRW

Key Test CSFKYT

Key Test Extended CSFKYTX

Key Translate CSFKTR

MAC Generate CSFMGN

MAC Generate (with ALET) CSFMGN1

MAC Verify CSFMVR

MAC Verify (with ALET) CSFMVR1

MDC Generate CSFMDG

MDC Generate (with ALET) CSFMDG1

Multiple Clear Key Import CSFCKM

Multiple Secure Key Import CSFSKM

One Way Hash Generate CSFOWH

One Way Hash Generate (with ALET) CSFOWH1

PCI Interface CSFPCI

PKA Decrypt CSFPKD

PKA Encrypt CSFPKE

PKA Key Generate CSFPKG

PKA Key Import CSFPKI

PKA Key Token Change CSFPKTC

PKA Public Key Extract CSFPKX

PKDS Record Create CSFPKRC

90 z/OS V1R3.0 ICSF System Programmer’s Guide

Table 8. Callable Services and Their ICSF Names (continued)

Callable Service ICSF Name

PKDS Record Delete CSFPKRD

PKDS Record Read CSFPKRR

PKDS Record Write CSFPKRW

PKSC Interface CSFPKSC

Prohibit Export CSFPEX

Prohibit Export Extended CSFPEXX

Random Number Generate CSFRNG

Retained Key Delete CSFRKD

Retained Key List CSFRKL

Secure Key Import CSFSKI

Secure Messaging for Keys CSFSKY

Secure Messaging for PINs CSFSPN

SET Block Compose CSFSBC

SET Block Decompose CSFSBD

Symmetric Key Export CSFSYX

Symmetric Key Generate CSFSYG

Symmetric Key Import CSFSYI

Transform CDMF Key CSFTCK

User Derived Key CSFUDK

VISA CVV Service Generate CSFCSG

VISA CVV Service Verify CSFCSV

Note: The alias for Common Programming Interface (CPI) callable services is
CSNBxxx. The alias for the ANSI X9.17 key management callable services is
CSNAxxx. The alias for the PKA callable services is CSNDxxx.

Table 9. Compatibility Services and Their ICSF Names

Compatibility Service ICSF Name

Encipher under Master Key CSFEMK

Generate a key CSFGKC

Import a key CSFRTC

Cipher/Decipher CSFEDC

Input
The installation exit for each callable service gets the address of the exit parameter
block (EXPB) in register 0. ICSF obtains and initializes an EXP for every service
call. Figure 8 on page 92 illustrates the contents of register 0, and Table 10 on
page 92 illustrates the EXPB for the callable service exits.

Register 1 contains the address of an address list. Each address in the list points to
a parameter. “Parameters” on page 96 describes the callable service parameter list.
The parameters the exit receives are the same parameters that are passed on the

Chapter 7. Installation Exits 91

call to the callable service. For more information about the parameters for each
callable service, see z/OS ICSF Application Programmer’s Guide.

The Exit Parameter Block
Table 10 describes the contents of the exit control block.

Table 10. EXPB Control Block Format for Callable Services

Offset (Dec)
Number of
Bytes Description

0 4 Name.

The name of the control block. The field contains the
character string EXPB.

4 2 Version.

The version of the control block. The field contains the
character string 01.

6 2 Length.

The length of the control block. The value is 40 in decimal.

8 4 Dynamic area.

The address of a 400-byte area that the exit can use as a
dynamic area.

12 4 Exit area address.

The address of an 8-byte area for the preprocessing and
postprocessing invocations of the exit to use for
communication. ICSF does not check or change this field.

Register 0

EXPB EXPB

NAME

VERSION LENGTH

DYNAMIC AREA

DYNAMIC AREA

400 BYTES

8 BYTES

NAME
VERSION
LENGTH
CCVT
SIF
FLAGS
RESERVED

EXIT AREA
EXIT AREA

EXIT COMMUNICATION

FLAGS

SERVICE PARMS
SERVICE PARM BLOCK

CCVT

CCVT
. . .

. . .

MODULE NAME

Figure 8. EXPB Control Block in the Callable Service Exits

92 z/OS V1R3.0 ICSF System Programmer’s Guide

Table 10. EXPB Control Block Format for Callable Services (continued)

Offset (Dec)
Number of
Bytes Description

16 4 Exit communication area.

A character string that can be used for communication
between preprocessing and postprocessing invocations of
a callable service exit.

20 4 Flags.

A flag byte. Each bit setting (on/off) indicates a particular
condition. ICSF sets bit 0 and an exit cannot change that
bit. Your exit can set any of the other bits.

Bit Meaning When Set On/Off

0 Postprocessing
invocation./Preprocessing invocation.

1 Reserved.

2 Use the return and reason code that the
exit places in register 0 and register 15
as the callable service’s return
code/reason code. Do not use the exit’s
return code as the service return code in
registers 0 and 15.

The exit can pass any valid return code
in register 15 and any valid reason code
in register 0. If this bit is set on, ICSF
uses these codes as the callable
service’s return and reason codes. See
“Return Codes” on page 96 for more
information about using exit return
codes.

3 Do not call the postprocessing invocation
of the callable service exit./Call the
postprocessing invocation of the callable
service exit.

4 Bypass the callable service./Run the
service.

5 Use the return and reason code that the
exit places in the service’s parameter
list./Do not store codes the exit places in
the service’s parameter list.

The exit can pass any valid return and
reason code in the first two parameters
of the callable service’s parameter list.
“Parameters” on page 96 describes the
callable service parameter list.

6 CSFSKRC bypass input label
parsing./CSFSKRC parse the input label.

7–31 Reserved.

Chapter 7. Installation Exits 93

Table 10. EXPB Control Block Format for Callable Services (continued)

Offset (Dec)
Number of
Bytes Description

24 4 Secondary parameter block.

The address of the secondary parameter block. The exit
can use the SPB to determine the environmental
information of the callable service. For a description of the
SPB, see “The Secondary Parameter Block”.

28 4 CCVT.

Address of the Cryptographic Control Vector Table (CCVT).
For a description of the CCVT, see The Cryptographic
Communication Vector Table (CCVT) on page 157.

32 8 Module name.

The installation exit’s load module name. The field contains
the value of the load module name you specified on the
EXIT keyword in the installation options data set. The field
is 8 bytes of characters, and the value is left-justified and
padded with blanks.

The Secondary Parameter Block
Offset +24 of EXPB contains the address of the secondary parameter block (SPB).
The exit can use the SPB to determine the environmental conditions of the callable
service. Table 11 describes the contents of SPB.

Table 11. SPB Control Block Format

Offset
(Dec)

Number of
Bytes Description

0 4 Name.

The name of the control block. The field contains the
character string SPB.

4 2 Version.

The version of the control block. The field contains the
character string 02.

6 2 Length.

The length of the control block. The value is 24 in decimal.

8 4 CCVT.

The address of the Cryptographic Communication Vector
Table (CCVT). For a description of the CCVT, seeThe
Cryptographic Communication Vector Table (CCVT) on
page 157.

12 4 Signal Information Word.

Bytes 1–2 Reserved.

Bytes 3–4 of the field contain the installation-assigned code
number for an installation-defined callable service.

94 z/OS V1R3.0 ICSF System Programmer’s Guide

Table 11. SPB Control Block Format (continued)

Offset
(Dec)

Number of
Bytes Description

16 4 Flags and Indicators. Each byte of this field is either an
indicator byte or contains flag bits. The contents of each byte
in the field are listed below.

Byte 1—PSW key. This byte contains the original caller’s
program status word key. The first four bits are the key and
the remaining four bits are zeros.

Byte 2—Caller’s state. Each bit in byte 2 indicates a condition
of the caller’s state.

Bit Meaning When Set On
0 Caller was a PC entry from CSFASVC. You

called SVC entry from a CUSP/PCF
compatibility macro.

1 Original caller in AMODE(31).
2 Original caller in AR mode.
3 Original caller in SRB mode.
4 Original caller in supervisor state or system

key.
5–7 Reserved.

Byte 3—Flag byte 1. The first flag byte. Each bit that is set on
indicates a particular condition.
Note: These bits are informational. Do not change bits 0 and
1.

Bit Meaning When Set On
0 The callable service is using a “storage

access” ICSF instruction.
1 ICSF local lock should be freed when

recovery is entered.
2 If recovery is entered, the recovery routine

should take a system abend but not a
system dump.

3 An I/O subtask has been posted for a
dynamic CKDS service call.

4 I/O subtask posted for PKDS.
5 NQAP in progress.
6–7 Reserved.

Byte 4—Flag byte 2

Bit Meaning When Set On
0 The callable service parameter list has a

position for a return code.
1 The callable service parameter list has a

position for a reason code.
2 Internal call to ICSF service.
3 SPBLATCH held for CCP array and not

for CAMQ.
4-7 Reserved.

20 4 Protected storage pointer.

24 4 Protected storage length.

28 4 EDC buffer pointer.

32 4 EDC buffer length.

Chapter 7. Installation Exits 95

Table 11. SPB Control Block Format (continued)

Offset
(Dec)

Number of
Bytes Description

36 4 Address of XPB.

40 8 ID for latch manager.

48 4 Address for ERPB.

52 4 Original caller’s register 1.

56 4 Address of CPRB request storage.

60 4 Length of CPRB request storage.

64 4 Address of CPRB reply storage.

68 4 Length of CPRB reply storage.

72 4 CCPS address.

76 8 RTM token.

84 4 Reserved.

Parameters
Each callable service has a unique parameter list. Parameters 1–4 are always the
return code, reason code, exit data length, and exit data. The other parameters
differ with each service. The installation exit gets passed the address of the callable
service parameter list in Register 1. For a description of each callable service’s
parameter list, refer to z/OS ICSF Application Programmer’s Guide.

Return Codes
To use a return code and reason code that are set in the postprocessing exit, you
must set bit 2 in Offset +20 of EXPB. Setting bit 2 on causes ICSF to return the
return code from the exit in register 15 and the reason code in register 0. Even
though the application program receives the codes from the exit in the registers, the
program still receives the codes from the callable service in the parameter list. The
return code is the first parameter, and the reason code is the second parameter in
the list.

Some control languages can access registers more easily than others. For this
reason, ICSF allows you to return the return code and the reason code in both the
registers and the parameter list. To do this, set bit 5 as well as bit 2 in Offset +20 of
EXPB. The application then receives the return code and the reason code from the
exit in both the registers and the parameter list.

If you do not set either of or both of the flag bits, the callable service ignores any
return or reason code from the exit. The application program receives the codes
from the callable service in both the registers and the parameter list.

The exit can pass back any valid return code for each service. For a listing of each
service’s return codes, see z/OS ICSF Application Programmer’s Guide.

Cryptographic Key Data Set Entry Retrieval Installation Exit
The cryptographic key data set entry retrieval installation exit (CSFCKDS) is called
when a callable service requests an entry from the in-storage cryptographic key
data set (CKDS) by label. ICSF calls this exit after it finds the record in the CKDS
and before it returns the record to the callable service.

96 z/OS V1R3.0 ICSF System Programmer’s Guide

Purpose and Use of the Exit
The exit point lists the entry that matches a certain label and type. You can use the
exit to check fields in a record and decide whether to use the record. The exit sets
a return code that specifies whether to use the record or not. Use the exit_data
parameter in the callable service to specify what the exit should use as a search
value.

For example, you can use the CKDS entry retrieval exit to perform a specific search
of the installation data field. An installation can specify whatever it chooses to in the
installation data field. The exit can select a record that matches a certain key label
and key type. You can check the record and accept or reject it based on the
installation data field.

Environment of the Exit
The exit receives control with the following characteristics:
v Supervisor state
v Key 0
v APF-authorized
v TCB or SRB mode
v AR mode
v AMODE(31)
v RMODE(ANY)
v Cross memory mode

The exit can change the characteristics during its processing. However, the exit
must return to its caller with the same characteristics as on entry.

The exit runs in the cross memory mode in the ICSF address space. The CKDS
records are ALET-qualified. ICSF supplies the address and the ALET of a CKDS
record as parameters to the CKDS retrieval exit.

For information about cross memory mode and AR mode, see z/OS MVS
Programming: Extended Addressability Guide.

Installing the Exit
Install the CKDS entry retrieval exit by installing the load module that contains the
exit into an APF-authorized library. ICSF uses the following normal z/OS search
order to locate the exit:
v Job pack area
v Steplib (if one exists)
v Link pack area (LPA)
v Link list (SYS1.LINKLIB concatenation)

Define the ICSF name and the load module name on the EXIT keyword in the
installation options data set. “Changing Parameters in the Installation Options Data
Set” on page 20 describes the installation options data set in further detail. The
EXIT keyword has the following syntax:

EXIT (ICSF name, load module name, FAIL (options))

The ICSF name portion of the keyword refers to the ICSF name for the exit. The
ICSF name for the CKDS entry retrieval exit is CSFCKDS. The load module name
is the name of the load module that contains the exit. The name can be any valid

Chapter 7. Installation Exits 97

name that your installation chooses. The FAIL portion of the EXIT keyword specifies
the action ICSF takes if the exit cannot be loaded or if it ends abnormally. The valid
FAIL options are:

NONE Do not take any action.

EXIT Do not call this exit again. The exit will not receive control during
subsequent attempts at CKDS retrieval.

SERVICE Fail the service. All subsequent attempts at CKDS entry retrieval
fail.

ICSF End ICSF.

You must specify a FAIL option. If you do not, ICSF returns an error message, ends
abnormally, and generates an SVC dump when attempting to load the exit. If the
exit ends abnormally, the attempt at CKDS entry retrieval fails, regardless of the
FAIL option you specified. FAIL options only apply to subsequent attempts at CKDS
entry retrieval.

Input
The CKDS entry retrieval exit receives the address of an address list passed in
register 1. Each address in the list points to a parameter. The address list exists in
the ICSF address space, and register 1 is not ALET-qualified.

Table 12 describes the parameters for the CKDS entry retrieval exit.

Table 12. The CKDS Entry Retrieval Exit Parameters

Parameter Description

1 The address of the current CKDS record. See Table 20 on page 140 for a
description of the CKDS record format.

2 The address of the ALET of the current CKDS record. This record is a
fullword address.

3 The address of the record that matches a certain label and type. This
value is a fullword integer. The parameter is in the ICSF address space
and the exit can access the parameter using an ALET of 0.

4 The address of the record chosen. This value is a fullword integer. The
parameter is in the ICSF address space and the exit can access the
parameter using an ALET of 0.

5 The address of the exit data length. This value is a fullword integer. The
parameter is in the caller’s address space, which is the secondary
address space, and the exit can access the parameter using an ALET of
1.

6 The address of the exit data. For a description of exit data, see z/OS
ICSF Application Programmer’s Guide. The parameter is in the caller’s
address space, which is the secondary address space, and the exit can
access the parameter using an ALET of 1.

7 The address of the secondary parameter block. See “The Secondary
Parameter Block” on page 94 for a description of the secondary parameter
block. The parameter is in the ICSF address space and the exit can
access the parameter using an ALET of 0.

98 z/OS V1R3.0 ICSF System Programmer’s Guide

Return Codes
You can pass a return code back in register 15.

The valid decimal return codes are:

Return Code Description
0 Use the record.
4 Do not use the record.

If you specify not to use any of the records that match the search value, ICSF
returns control to the application. It returns with return code 12 and reason code
10024, which indicate that the exit rejected all the keys in the search.

CUSP/PCF Conversion Program Installation Exit
Use the CUSP/PCF conversion program to convert a CKDS from the Cryptographic
Unit Support Program (CUSP) or the Programmed Cryptographic Facility (PCF)
format to the ICSF format. The conversion program converts each record in the
CUSP/PCF CKDS to the CKDS format that ICSF uses, and then writes the new
record to an ICSF CKDS. The conversion program extends the label field to 64
bytes.

An ICSF CKDS record contains an installation data field that you can use to further
identify the record. This field can contain any information about a record that your
installation would like to use. You can use the conversion program exit to change
the information in this field. You can also use the conversion program exit to have
the conversion program not place a converted CKDS entry in the ICSF CKDS.

Chapter 3, “Migration from CUSP/PCF to z/OS ICSF” on page 31 contains more
information about the CUSP/PCF conversion program.

Note: The ICSF/MVS Version 1 Release 1 conversion program cannot run this exit.

Purpose and Use of the Exit
The CUSP/PCF conversion program installation exit (CSFCONVX) is called at three
points during processing of the conversion program:

v During conversion program initialization. This is known as the conversion
preprocessing invocation. At this point, you can use the exit to change the ICSF
CKDS header record installation data field.

v During conversion program individual record processing. This is known as
the record processing invocation. At this point, the conversion program is
converting the CUSP/PCF entry but has not yet placed the entry into the ICSF
CKDS. You can use the exit to change the installation data field in the entry for
the ICSF CKDS. You can also specify that the conversion program not place the
entry into the ICSF CKDS.

v Just prior to conversion program termination. This is known as the
conversion postprocessing invocation. At this point, like the preprocessing exit
point, you can use the exit to change the ICSF CKDS header record installation
data field.

Environment of the Exit
The exit receives control with the following characteristics:
v Problem program state.
v APF-authorized

Chapter 7. Installation Exits 99

v TCB mode
v Address Space Control mode=primary
v AMODE(31)
v RMODE(ANY)

The exit can change the characteristics during its processing. However, the exit
must return to its caller with the same characteristics as on entry.

The exit runs in task mode in the caller’s own address space.

Installing the Exit
Install the load module that contains the exit into an APF-authorized library. ICSF
uses the following normal OS/390 search order to locate the exit:
v Job pack area
v Steplib (if one exists)
v Joblib (if one exists)
v Link pack area (LPA)
v Link list (SYS1.LINKLIB concatenation)

Define the ICSF name and load module name on the EXIT keyword in the
installation options data set. For more information about the installation options data
set, see “Changing Parameters in the Installation Options Data Set” on page 20.
The EXIT keyword has the following syntax:

EXIT (ICSF name, load module name, FAIL (options))

The ICSF name portion of the keyword refers to the ICSF name for the exit. The
ICSF name for the conversion program exit is CSFCONVX. The load module
name is the name of the load module that contains the exit. This name can be any
valid name that your installation chooses. The FAIL portion of the EXIT keyword
specifies the action ICSF takes if the exit cannot be loaded. The valid FAIL options
are NONE, EXIT, SERVICE, and CSF. For the conversion program exit, you can
use the following options only:
NONE Initialization continues even if exit cannot be loaded.
ICSF Initialization ends if exit cannot be loaded.

You must specify a FAIL option. If you do not, ICSF returns an error message, ends
abnormally, and generates an SVC dump when attempting to load the exit.

If the exit ends abnormally, the conversion program does also.

Input
ICSF supplies the address of the conversion program exit parameter block (CVXP)
in register 1 each times it calls the CUSP/PCF conversion program exit. The exit
does not receive a parameter list. “Entry and Return Specifications” on page 77
gives a complete list of the registers on entry to the conversion program exit.

Table 13 describes the contents of the exit control block.

Table 13. CVXP Control Block Format

Offset (Dec)
Number of
Bytes Description

0 4 Name.

The name of the control block. The field contains the
character string CVXP.

100 z/OS V1R3.0 ICSF System Programmer’s Guide

Table 13. CVXP Control Block Format (continued)

Offset (Dec)
Number of
Bytes Description

4 2 Version.

The version of the control block. The field contains the
character string 01.

6 2 Length.

The length of the control block. The value is 28 in decimal.

8 4 Return Code.

The value the exit returns. Valid decimal values for this
field are:

Return Code Description
0 Normal.
4 Do not process the entry.
8 End conversion program.

12 4 Address of the ICSF CKDS installation data area.

16 4 The value in decimal of the length of the ICSF CKDS
installation data area.

20 1 Action.

Bit 0 is set on if the action was to change an entry on the
ICSF CKDS. Bit 0 is set off if the action was to add an
entry to the ICSF CKDS. The rest of the bits in this byte
are reserved.

21 1 Call Point.

Indicates the invocation point of the exit. The exit cannot
change this field and the conversion program does not use
this field on return from the exit. You can determine the
invocation point by the bit that is set on.

Bit Meaning When Set On

0 Conversion preprocessing invocation.

1 Conversion postprocessing invocation.

2 Record processing invocation.

3-7 Reserved.

22 6 Reserved.

Return Codes
You can pass a return code back to the conversion program in the CVXP control
block (offset +8) or in register 15. The exit can use return codes to reject records
for conversion processing or end the conversion program.

Return Code Description
0 Normal.
4 Do not process the entry.
8 End conversion program.

Chapter 7. Installation Exits 101

Single-record, Read-write Installation Exit
ICSF provides an exit that is called when a record is read from or written to a
CKDS or PKDS. ICSF calls the single-record, read-write (CSFSRRW) exit under the
following conditions:

v The CUSP/PCF conversion program converts a record into ICSF CKDS format.
The conversion program calls the exit right before it writes a converted record to
the ICSF CKDS.

v ICSF reenciphers a disk copy of a CKDS under a new master key. ICSF calls the
exit two times during this processing; after ICSF reads a record to reencipher it
and before ICSF writes the reenciphered record.

v ICSF refreshes the in-storage copy of a CKDS. ICSF calls this exit after reading
a record from the disk copy to place into storage.

v You enter a key into a disk copy of the CKDS by using the key entry hardware.
ICSF calls the exit two times during this processing: after reading a partial key
from the CKDS, and before writing a record into a CKDS.

v An application creates, reads, writes, or deletes a record from the PKDS.

Using the exit, you can do such things as prevent the record from being processed,
or add user information to the record.

Purpose and Use of the Exit
The exit receives a parameter block that describes the CKDS or PKDS record and
the action occurring to the record. By setting a return code in the parameter block,
the exit may affect the processing of the record. Depending on the return code, one
of the following actions occurs:
v ICSF continues to read the record.
v ICSF does not read or write the record.
v ICSF does not read or write the entire CKDS or PKDS.

The parameter block contains the address of the CKDS or PKDS record. The exit
can add information into the installation data field of the record. For integrity
reasons, ICSF receives only changes to this particular field. If the exit sets a return
code to continue processing, ICSF processes the record with this information.

The KGUP exit, the CUSP/PCF conversion program exit, and the single-record,
read-write exit can add information to the installation data field of the CKDS or
PKDS header record to identify the data set. If the header record installation data
field contains information identifying the CKDS or PKDS, the single-record,
read-write exit can check the field to ensure that it is processing the correct data
set. If the exit finds that it is processing the wrong CKDS or PKDS, the exit can set
a return code to stop the processing of the entire data set.

You can use the exit to prevent processing of a record. You can check certain fields
in the record and specify that the record not be processed. For example, during
postprocessing conversion, you can prevent the processing of any record of a
certain key type. However, the exit should never prevent processing of a record
containing a system key because ICSF uses these keys in its processing. You
differentiate a system key record from other key records by its key label. A system
key record label contains all binary zeros. All other key labels contain an alphabetic
first character with the remaining characters as either alphabetic or numeric.

102 z/OS V1R3.0 ICSF System Programmer’s Guide

Environment of the Exit
The exit receives control with the following characteristics:
v Problem program state
v APF-authorized
v TCB mode
v Address Space Control mode=primary
v AMODE(31)
v RMODE(ANY)

The exit can change the characteristics during its processing. However, the exit
must return to ICSF with the same characteristics as on entry.

When the single-record, read-write exit is called, the exit parameter block is in the
caller’s address space. The exit is loaded in the caller’s address space. The caller
is either the CUSP/PCF conversion program, the utility program (CSFEUTIL), or an
ICSF panel.

Installing the Exit
Install the load module that contains the exit into an APF-authorized library. ICSF
uses the following search order to locate the exit:
v Job pack area
v Steplib (if one exists)
v Joblib (if one exists)
v Link pack area (LPA)
v Link list (SYS1.LINKLIB concatenation)

Define the ICSF name and load module name on the EXIT keyword of the
installation options data set. For more information about the installation options data
set, see “Changing Parameters in the Installation Options Data Set” on page 20.
The EXIT keyword has the following syntax:

EXIT (ICSF name, load module name, FAIL (options))

The ICSF name portion of the keyword refers to the ICSF name for the exit. The
ICSF name for the single-record, read-write exit is CSFSRRW. The load module
name is the name of the load module that contains the exit. The name can be any
valid name that your installation chooses. The FAIL portion of the EXIT keyword
specifies the action ICSF takes if the exit cannot be loaded or ends abnormally. The
valid FAIL options are:
NONE Do not take any action.
EXIT Do not call this exit again.
SERVICE Fail the service that called the exit.
ICSF Fail the service that called the exit.

You must specify a FAIL option. If you do not, ICSF returns an error message, ends
abnormally, and generates an SVC dump when attempting to load the exit. If you
specify FAIL(ICSF) and the exit cannot be loaded, ICSF initialization does not
continue. If you specify FAIL(ICSF) and the exit ends abnormally, ICSF issues an
advisory message that ICSF should be ended.

Input
The single-record, read-write exit receives the address of the address list passed in
register 1. The first address in the address list is for the read-write exit parameter

Chapter 7. Installation Exits 103

block (RWXP). The exit does not receive a parameter list. “Entry and Return
Specifications” on page 77 gives a complete list of the registers on entry to the
single-record, read-write exit.

The RWXP parameter block contains the address of the CKDS or PKDS record that
is being processed and information about the situation in which the exit is called.
The exit sets a return code in a field in the block to specify whether the processing
should continue. Table 14 describes the RWXP control block.

Table 14. RWXP Control Block Format

Offset (Dec)
Number of
Bytes Description

0 4 Name.

The name of the control block. The field contains the
character string RWXP.

4 2 Version.

The version of the control block. The field contains the
character string 02.

6 2 Length.

The length of the control block. The value of this field is 28
in decimal.

8 4 Return Code.

The value the exit returns. Valid decimal values for this
field are:

Return Code Description
0 Process current CKDS record
4 Do not process current CKDS record
8 End processing

12 4 Address of the CKDS record.

16 4 The value in decimal of the length of the CKDS record.

20 7 Action.

The field is a 7-byte character string describing the action
performed on the CKDS record. The field can contain
these values:
v READ
v WRITE
v DELETE

Note that the value of the field is left-justified and padded
with blanks.

104 z/OS V1R3.0 ICSF System Programmer’s Guide

Table 14. RWXP Control Block Format (continued)

Offset (Dec)
Number of
Bytes Description

27 1 Exit Invocation Reason

The reason that the exit was invoked. The field relates to
only the CKDS and can contain one of the following
values:

2 Refresh of the in-storage CKDS with a
disk copy of a CKDS. The value of the
Action field is READ.

3 Reencipher of the in-storage CKDS from
a disk copy of a CKDS. The value of the
Action field is READ or WRITE.

5 Conversion record postprocessing. The
value of the Action field is WRITE.

8 Key entry hardware input. The value of
the Action field is READ or WRITE.

28 4 Data set type (either CKDS or PKDS).

Return Codes
You can pass a return code back to the single-record, read-write process in the
RWXP control block (offset +8) or in register 15. The exit can use the return code to
reject records or to end the single record read-write process. The following values
are valid decimal return codes:

Return Code Description
0 Process the current CKDS record.
4 Do not process the current CKDS record.
8 End processing.

Exit Points for Security Installation Exits
IBM-supplied security exit routines were removed in ICSF/MVS Version 2 Release
1. The exit points themselves are still available.

Security Installation Exits
ICSF provides the following exit points to control access to the keys in the
in-storage CKDS and to the callable services.
v Security Initialization Exit
v Security Termination Exit
v Security Service Exit
v Security Key Exit

Purpose and Use of the Exits
There are two groups of security exits. The security initialization exit (CSFESECI)
and security termination exit (CSFESECT) are called during ICSF mainline
processing to maintain a security communication area that is used by the other
security exits. The security service exit (CSFESECS) and security key exit
(CSFESECK) can be used to control access to resources on ICSF.

Below is a description of each point where ICSF calls security exit routines.

Chapter 7. Installation Exits 105

Security Initialization Exit
ICSF calls this exit during initialization just before calling the ICSF mainline exit
CSFEXIT. You can use this exit to anchor resource lists, work areas, and other data
to the security communication area.

Security Termination Exit
ICSF calls this exit as the last function when ICSF ends, before deleting all the
installation exits. You can use this exit to free whatever is anchored to the security
communication area.

Security Service Exit
ICSF calls this exit when an application uses an IBM-supplied callable service,
before calling any other installation exit that is associated with that service. You can
use this exit to control access to a callable service. Refer to Table 8 on page 89 for
a list of callable services.

Security Key Exit
ICSF calls this exit when an application uses a key in the in-storage CKDS, before
any other installation exit associated with that use of the key is called. You can use
this exit to control access to the keys in the CKDS.

Environment of the Exits
The security initialization and termination exits receive control with the following
characteristics:
v Supervisor state
v Key 0
v APF-authorized
v TCB mode
v Address Space Control mode=access register mode
v AMODE(31)
v RMODE(ANY)

The exits can change the characteristics during their processing. However, the exits
must return to ICSF with the same characteristics as on entry.

The security service and key exits receive control with the following characteristics:
v Supervisor state
v Key 0
v APF-authorized
v TCB mode
v Cross memory mode
v AR mode
v AMODE(31)
v RMODE(ANY)

The exits can change the characteristics during their processing. However, the exits
must return to ICSF with the same characteristics as on entry.

Note: The security exits are not called in SRB mode.

Installing the Exits
You install the security exits by installing the load module that contains the exit into
an APF authorized library. ICSF uses the following normal search order to locate
the exit:
v Job pack area
v Steplib (if one exists)

106 z/OS V1R3.0 ICSF System Programmer’s Guide

v Link pack area (LPA)
v Link list (SYS1.LINKLIB concatenation)

Use the EXIT keyword in the installation options data set to define the ICSF name
and load module name. For information about the installation options data set, see
Changing Parameters in the Installation Options Data Set. The EXIT keyword has
the following syntax:

EXIT (ICSF name, load module name, FAIL (options))

The ICSF name portion of the keyword refers to the ICSF identifier for each exit,
CSFESECI, CSFESECT, CSFESECS, and CSFESECK. The load module name is
the name of the load module that contains the exit. The name can be any valid
name your installation chooses. The action that the FAIL portion of the EXIT
keyword specifies depends on the type of security exit.

For the security initialization and termination exits, the FAIL portion specifies the
action ICSF takes if the exit cannot be loaded. The valid FAIL options mean:
NONE Continue initialization even if exits cannot be loaded.
SERVICE Continue initialization even if exits cannot be loaded.
EXIT Continue initialization even if exits cannot be loaded.
ICSF End ICSF if exits cannot be loaded.

You must specify a FAIL option. If you do not, ICSF returns an error message, ends
abnormally, and generates an SVC dump when attempting to load the exit.

If the security initialization exit ends abnormally, ICSF ends. If the security
termination exit ends abnormally, ICSF continues to end.

For the security service and key exits, the FAIL portion specifies the action ICSF
takes if the exit cannot be loaded or ends abnormally. When the service or key exit
is loaded, the valid FAIL options mean:
NONE Continue initialization even if exits cannot be loaded.
SERVICE Continue initialization even if exits cannot be loaded.
EXIT Continue initialization even if exits cannot be loaded.
ICSF End ICSF if exits cannot be loaded.

You must specify a FAIL option. If you do not, ICSF returns an error message, ends
abnormally, and generates an SVC dump when attempting to load the exit.

When the security service exit ends abnormally, the valid FAIL options mean:

NONE Process subsequent calls to the service as if no abnormal ending
occurred. Call the exit for each call of a callable service.

SERVICE Fail on subsequent calls to the particular service.

EXIT Do not call the exit again. Bypass the exit on subsequent calls to
any IBM callable service.

ICSF End ICSF.

If the security service exit ends abnormally, ICSF ends the service call before
performing the service.

When the security key exit ends abnormally, the valid FAIL options mean:

NONE Process subsequent attempts to access the in-storage CKDS as if
no abnormal ending occurred. Call the exit for each access attempt.

Chapter 7. Installation Exits 107

SERVICE Fail on subsequent attempts to access the CKDS.

EXIT Do not call the exit again. Bypass the exit on subsequent accesses
of the CKDS.

ICSF End ICSF.

If the security key exit ends abnormally, ICSF ends the attempt to access the CKDS
before performing the access.

Input
The security initialization and termination exits receive the address of an 8-byte
security communication area in register 1. When ICSF starts, the security
initialization exit can use this area as an anchor for resource lists, work areas, or
any other data that your service or keys security exits need to check authorizations.
When ICSF ends, the security termination exit can free any system resources that
are anchored to this area and used by the service or keys security exits. For
example, the exit can free storage that is allocated from the common storage area
(CSA).

When a call to a service occurs, the security service exit receives the address of an
address list passed in register 1. Table 15 describes the parameters the exit
receives:

Table 15. Parameters Received by the Security Service Exit

Parameter
Number of
Bytes Description

1 8 The security communication area.

2 8 The character string CSFSERV.

3 8 The name of the service being called.

When an attempt to access a CKDS entry occurs, the security key exit receives the
address of an address list passed in register 1. Table 16 describes the parameters
this exit receives:

Table 16. Parameters Received by the Security Key Exit

Parameter
Number of
Bytes Description

1 8 The security communication area.

2 8 The character string CSFKEYS.

3 64 The label of the key entry being accessed.

Register 0 contains the address of the exit parameter block (EXPB). See Figure 8
on page 92 and Table 10 on page 92.

Return Codes
All the security exits can pass back a return code in register 15. The security
initialization exit supports the following decimal return codes:

Return Code Description
0 Proceed with initialization.
4 End ICSF.

108 z/OS V1R3.0 ICSF System Programmer’s Guide

Any return codes other than those listed cause ICSF to end abnormally.

The security termination exit supports the following decimal return codes:

Return Code Description
0 or 4 Proceed with termination.

Any return codes other than those listed cause ICSF to end abnormally.

The security service exit supports the following decimal return codes:

Return Code Description
0 or 4 Proceed with the service call.

Any return codes other than those that are listed cause the service call to fail.

The security key exit supports the following decimal return codes:

Return Code Description
0 or 4 Proceed with the access of the CKDS entry.

Any return codes other than those that are listed cause the access of the key to fail.

Key Generator Utility Program Installation Exit
The key generator utility program (KGUP) generates and maintains keys in the
cryptographic key data set (CKDS). You can use KGUP to generate or supply a key
to update the CKDS. KGUP generates keys to use in key exchange with other
systems. ICSF provides an exit for customizing KGUP processing. For information
about using KGUP to managing cryptographic keys, see z/OS ICSF Administrator’s
Guide.

Purpose and Use of the Exit
You can use the KGUP installation exit (CSFKGUP) to modify records in the CKDS,
write copies of records to alternate data sets, or put additional information in the
SMF record. There are many other uses for the KGUP exit depending on your
installation’s needs. Examine the calling points for an exit and the active control
block fields at each calling point to determine other applications for the exit.

KGUP Calling Points
After an ICSF administrator submits a KGUP job for processing, KGUP calls exits at
four points in processing:

1. During KGUP initialization. This is known as the KGUP preprocessing exit.
After the KGUP job begins but before KGUP starts processing a control
statement, KGUP calls this exit.

You can use this exit to place additional information in the installation data field
of the CKDS header record. You may want to do this if you need to process
different cryptographic key data sets differently. You can place information in the
installation data field of the record, and then subsequent calls of the exit can
use this information as the basis for performing processes.

2. Before KGUP processes a key that is identified by a control statement.
This is known as the record preprocessing exit. Before KGUP accesses the
CKDS to retrieve the key that is requested in the control statement, KGUP calls
the exit again.

Chapter 7. Installation Exits 109

Note: This call occurs before KGUP accesses the CKDS. If an exit routine
alters a key entry at this call, KGUP accesses the CKDS with the altered
entry.

You can use this exit to provide additional security for entering clear key values.
When a user enters a clear key in a control statement, use the exit to change
the value. In this way, the user never knows the actual clear value in the CKDS.
For example, a user enters zeros for clear key values. Your exit generates some
random number and replaces the user’s clear key value. KGUP then processes
the exit’s random number as the value to write to the CKDS.

3. Before KGUP updates the CKDS with a key entry. This is known as the
record postprocessing exit. After KGUP processes a key and before KGUP
updates the CKDS, KGUP calls the exit a third time.

At this call, the installation exit can change any information in the Key Output
Data Set. Changing the Key Output Data Set also enters the changed keys into
the Control Statement Output Data Set, if the keys are exportable. You can use
this exit to create audit trails.

4. During KGUP termination. This is known as the KGUP postprocessing exit.
Calls to this exit occur after KGUP completes processing but before KGUP
returns control to ICSF.

Note: If an error occurs in exit processing, KGUP does not call the remaining exit
invocations. If an error occurs in KGUP processing that does not result in an
abnormal ending, KGUP does not call the remaining exit invocations.

Processing in the Exit
At each call, the exit receives the address of the KGUP exit parameter block
(KGXP) in register 1. The exit can access any of the data in KGXP. The exit can
alter some of the fields in KGXP, while others are simply references. Also, the
KGUP exit can alter some fields at some calls but not at other calls.

A field in KGXP gives the calling point of the exit. The exit uses this field to
determine when to call the exit to perform appropriate processing. “Input” on
page 111 gives a more detailed explanation of the KGXP control block, the values it
contains, and when an exit can use or change the values.

Environment of the Exit
The KGUP calls the exit only in the address space where KGUP is running. The
exit receives control with the following characteristics:
v Supervisor state
v APF-authorized
v TCB mode
v Address Space Control mode=primary
v AMODE(31)
v RMODE(ANY)

The exit can change the characteristics during its processing. However, the exit
must return to its caller with the same characteristics as on entry.

Installing the Exit
Install the load module that contains the exit into an APF authorized library. ICSF
uses the following search order to locate the exit:
v Job pack area
v Steplib (if one exists)

110 z/OS V1R3.0 ICSF System Programmer’s Guide

v Joblib (if one exists)
v Link pack area (LPA)
v Link list (SYS1.LINKLIB concatenation)

Define the ICSF name and load module name on the EXIT keyword in the
installation options data set. For more information about the installation options data
set, see “Changing Parameters in the Installation Options Data Set” on page 20.
The EXIT keyword has the following syntax:

EXIT (ICSF name, load module name, FAIL (options))

The ICSF name portion of the keyword refers to the ICSF name for the KGUP exit.
The ICSF name for the KGUP exit is CSFKGUP. The load module name is the
name of the load module that contains the exit. The name can be any valid name
that your installation chooses. The FAIL portion of the EXIT keyword specifies the
action ICSF takes if the exit cannot be loaded. The valid FAIL options are NONE,
EXIT, SERVICE, and CSF. The FAIL options available to the KGUP exit are the
following:
NONE Initialization continues even if exit cannot be loaded.
ICSF Initialization ends if exit cannot be loaded.

You must specify a FAIL option. If you do not, ICSF returns an error message, ends
abnormally, and generates an SVC dump when attempting to load the exit. If the
exit ends abnormally, KGUP also ends abnormally.

Input
At each of the invocation points, the exit receives the address of the KGUP exit
parameter block (KGXP) in register 1. The exit does not receive a parameter list.
“Entry and Return Specifications” on page 77 gives a complete list of the registers
on entry to the KGUP exit.

The KGUP exit can alter some of the fields in KGXP. Some fields only provide
information to the exit and cannot be changed, and some fields do not apply to
particular calls to the exit.

Table 17 describes the KGXP control block.

Table 17. KGXP Control Block Format

Offset
(Dec)

Number of
Bytes Description

0 4 Block Identifier.

The name of the control block. The field must contain the
character string KGXP. The exit must not change the value and
KGUP does not use the field upon return from the exit.

4 2 Block Version Number.

The version of the control block. The field must contain the
character string 02. The exit cannot change this field and
KGUP does not use this field on return from the exit.

6 2 Block Length.

The length of the control block. The decimal value of the field
is 172. The exit cannot change the field and KGUP does not
use this field on return from the exit.

Chapter 7. Installation Exits 111

Table 17. KGXP Control Block Format (continued)

Offset
(Dec)

Number of
Bytes Description

8 4 Return Code.

The return code the exit supplies upon completion. Upon
entry, KGUP initializes this field to zeros. The valid decimal
return codes for each of the invocation points are:

Record Pre- or postprocessing.
0 Normal, continue processing.
4 Reject control statement, but do not end

KGUP.
8 End KGUP immediately.

KGUP pre- or postprocessing.
0 Normal, continue processing.
> 0 End KGUP immediately.

12 1 Call Point.

Indicates the invocation point of the exit. The exit cannot
change this field and KGUP does not use this field on return
from the exit. You can determine the invocation point by the
bit that is set on.

Bit Meaning When Set On

0 KGUP preprocessing invocation.

1 KGUP postprocessing invocation.

2 Record preprocessing invocation.

3 Record postprocessing invocation.

4-7 Reserved.

13 1 Options.

Indicates the keywords specified on the KGUP control
statement. The exit cannot change this field and KGUP does
not use the field upon return from the exit. The field is used
only during the record preprocessing and postprocessing
invocations. You can determine the keywords on the control
statement by the bits that are set on.

Bit Meaning When Set On

0 LABEL with multiple values specified.

1 RANGE specified.

2 KEY specified.

3 CLEAR specified.

4 SINGLE specified.

5 NOCV specified.

6 OUTTYPE specified.

7 Reserved.

112 z/OS V1R3.0 ICSF System Programmer’s Guide

Table 17. KGXP Control Block Format (continued)

Offset
(Dec)

Number of
Bytes Description

14 1 Verb Type.

Indicates the verb used on the KGUP control statement. The
exit cannot change this field and KGUP does not use this field
on return from the exit. The field is used only for the record
preprocessing and record postprocessing invocations. You can
determine the verb on the control statement by the bit that is
set on.

Bit Meaning When Set On

0 ADD

1 UPDATE

2 DELETE

3 RENAME

4 SET

5–7 Reserved.

15 1 KGUP Flags.

Indicates the processing conditions encountered by KGUP at
the record postprocessing invocation. The exit cannot change
this field and KGUP does not use the field upon return from
the exit. The field is not used for the KGUP pre- or
postprocessing invocations or the record preprocessing
invocation. The processing conditions can be determined by
examining whether bit 0 is set on.

Bit Meaning When Set On

0 Non-odd parity key was imported.

1–7 Reserved.

Chapter 7. Installation Exits 113

Table 17. KGXP Control Block Format (continued)

Offset
(Dec)

Number of
Bytes Description

16 72 Action Key.

Contains the key index accessed by the KGUP control
statement. The key index consists of the key label and type
fields of a CKDS record entry (“Debugging Aids” on page 135
describes the CKDS record format in greater detail). The key
index is the first 72 bytes of a CKDS record, and the
information in the key index is used to differentiate one key
from another.

The exit can modify the field at the record preprocessing
invocation. The field is not used for the KGUP pre- or
postprocessing invocation or the record postprocessing
invocation.

If the exit modifies the field, KGUP uses the modified field to
access the CKDS upon return from the exit.

Before the record preprocessing invocation, KGUP places the
following in this field:

v The key label or key old label from the LABEL or key label
from the RANGE keyword of the control statement

v The key type from the TYPE keyword of the control
statement

The exit cannot modify the key label, key old label, or key
type.

88 72 Rename Key.

Contains the key index used to rename a key when RENAME
is the verb on the control statement. The key index consists of
the key label and type fields of a CKDS record entry.

The exit can modify the field at the record preprocessing
invocation. The field is not used for the KGUP pre- or
postprocessing or record postprocessing invocations.

If the exit modifies the field, KGUP uses the modified field to
access the CKDS upon return from the exit.

Before the record preprocessing invocation, KGUP places the
following information in this field:

v The key new label from the LABEL keyword of the control
statement.

v The key type from the TYPE keyword of the control
statement.

The exit cannot modify the key new label or the key type.

114 z/OS V1R3.0 ICSF System Programmer’s Guide

Table 17. KGXP Control Block Format (continued)

Offset
(Dec)

Number of
Bytes Description

160 72 Transkey key-label1.

The key index of the TRANSKEY key-label1 on the KGUP
control statement. The key index is the key label and type of
the CKDS record entry.

The exit can modify the field at the record preprocessing
invocation. The field is not used for the KGUP pre- or
postprocessing and record postprocessing invocations.

If the exit modifies the field, KGUP uses the modified field to
access the CKDS upon return from the exit.

Before the record preprocessing invocation, KGUP places the
following information in this field:

v The key-label1 from the TRANSKEY keyword of the control
statement.

v The key type. The type is IMPORTER, if keys are supplied;
the type is EXPORTER, if keys are not supplied.

The exit cannot modify the key-label1 or the key type.

232 72 Transkey key-label2.

The key index of the TRANSKEY key-label2 on the KGUP
control statement. The key index is the key label and type of
the CKDS record entry.

The exit can modify the field at the record preprocessing
invocation. The field is not used for the KGUP pre- or
postprocessing and record postprocessing invocations.

If the exit modifies the field, KGUP uses the modified field to
access the CKDS upon return from the exit.

Before the record preprocessing invocation, KGUP places the
following information in this field:

v The key-label2 from the TRANSKEY keyword of the control
statement.

v The key type. The key type is IMPORTER, if keys are
supplied; the type is EXPORTER, if keys are not supplied.

The exit cannot modify the key-label2 or the key type.

304 8 The OUTTYPE value, if specified. If no OUTTYPE is
specified, this field set to binary zeros.

Chapter 7. Installation Exits 115

Table 17. KGXP Control Block Format (continued)

Offset
(Dec)

Number of
Bytes Description

312 16 Key key-value.

The value of the key supplied on the KGUP control statement.
The 16 bytes are hexadecimal characters representing the
8-byte hexadecimal key value. The field contains a value only
if the KEY option was specified and a key value was supplied
on the control statement. You can determine whether the KEY
option was used by examining bit 2 at offset +13 in KGXP.

If TRANSKEY was specified on the control statement, KGUP
decrypts key-value1 under the transport key specified with the
TRANSKEY keyword. If CLEAR was specified on the control
statement, KGUP does not decrypt key-value1.

The exit can modify the field at the record preprocessing
invocation. This field is not used for the KGUP pre- or
postprocessing invocations or the record postprocessing
invocation. The field does not contain a value when
generating keys.

The exit is permitted to put values in this field only if a key
was supplied on the control statement. The exit-supplied value
must be edited for hexadecimal values and it then replaces
the values entered on the input control statement.

328 16 Key ikey-value.

The value of the intermediate key supplied on the KGUP
control statement. The 16 bytes are hexadecimal characters
representing the 8-byte hexadecimal key value. The field
contains a value only if the KEY option was specified and a
key value was supplied on the control statement. You can
determine whether the KEY option was used by examining bit
2 at offset +13 in KGXP.

If TRANSKEY was specified on the control statement, KGUP
decrypts the ikey-value under the transport key specified with
the TRANSKEY keyword. If SINGLE was specified on the
control statement, the ikey-value will be equal to the
key-value. If CLEAR was specified on the control statement,
KGUP does not decrypt the ikey-value.

The exit can modify the field at the record preprocessing
invocation. This field is not used at the KGUP pre- or
postprocessing invocation or the record postprocessing
invocation.

The field does not contain a value when generating keys.

The exit can put values in this field only if a key was supplied
on the control statement. The exit-supplied value must be
edited for hexadecimal values; it then replaces the values
entered on the input control statement.

116 z/OS V1R3.0 ICSF System Programmer’s Guide

Table 17. KGXP Control Block Format (continued)

Offset
(Dec)

Number of
Bytes Description

344 16 Key 3key-value.

The value of the third key supplied on the KGUP control
statement. The 16 bytes are hexadecimal characters
representing the 8-byte hexadecimal key value. The field
contains a value only if the KEY option was specified and a
key value was supplied on the control statement. You can
determine whether the KEY option was used by examining bit
2 at offset +13 in KGXP.

If TRANSKEY was specified on the control statement, KGUP
decrypts the 3key-value under the transport key specified with
the TRANSKEY keyword. If CLEAR was specified on the
control statement, KGUP does not decrypt the 3key-value.

The exit can modify the field at the record preprocessing
invocation. This field is not used at the KGUP pre- or
postprocessing invocation or the record postprocessing
invocation.

The field does not contain a value when generating keys.

The exit can put values in this field only if a key was supplied
on the control statement. The exit-supplied value must be
edited for hexadecimal values; it then replaces the values
entered on the input control statement.

360 4 CSFKEYS record for transkey, key-label1.

The address of the CSFKEYS data set record that is output
for transkey key-label1 on the KGUP control statement. The
field ONLY contains a value when generating keys. This field
is filled in when CLEAR keys are generated.

The exit can modify the field at the record postprocessing
invocation. KGUP sets the address to zero for the KGUP pre-
or postprocessing and record preprocessing invocations.

KGUP does not check the field upon return from the exit.
Normal CSFKEYS processing applies. KGUP uses key values
on control statement creation.

For the format of the CSFKEYS record, refer to z/OS ICSF
Administrator’s Guide.

364 4 CSFKEYS record for transkey, key-label2.

The address of the CSFKEYS data set record that is output
for transkey key-label2 on the KGUP control statement. The
field ONLY contains a value when generating keys. This field
is only filled in when TRANSKEY key-label2 is specified for
generated keys.

The exit can modify the field at the record postprocessing
invocation. KGUP sets the address to zero for the KGUP pre-
or postprocessing and record preprocessing invocations.

KGUP does not check the field upon return from the exit.
Normal CSFKEYS processing applies. KGUP uses key values
on control statement creation.

Chapter 7. Installation Exits 117

Table 17. KGXP Control Block Format (continued)

Offset
(Dec)

Number of
Bytes Description

368 4 CSFCKDS header record.

The address of the CSFCKDS data set header record.

The exit can check the field at the KGUP pre- or
postprocessing invocations. However, the exit can modify the
field only at the KGUP postprocessing invocation. KGUP sets
the value of the field to zero for the record pre- or
postprocessing invocations.

The exit can modify the installation data field of the CKDS
header record (see “Debugging Aids” on page 135 for a
description of the CKDS header record. Offset +196 of the
CKDS header record is the installation data field). The
installation data field supplied by the exit is placed in the
CKDS header record after the KGUP postprocessing
invocation returns control to KGUP.

372 4 CSFCKDS record.

The address of the CSFCKDS data set record processed by
the KGUP control statement. KGUP sets the address to zero
if the TRANSKEY keyword has two labels of transport keys.

The exit can check the field only at the record postprocessing
invocation. KGUP sets the address to zero for the record
preprocessing and KGUP pre- or postprocessing invocations.

The exit can modify the record area if the TRANSKEY
keyword does not have two labels.

376 4 RENAME CSFCKDS record.

The address of the CSFCKDS data set record processed
when the RENAME verb is used in a control statement. You
can determine whether the RENAME verb was used by
examining bit 3 at offset +14 in KGXP.

The exit can modify the field at the record postprocessing
invocation. KGUP sets the address to zero for the record
preprocessing and KGUP pre- or postprocessing invocations.

The exit can modify the record area. KGUP does not check
this field upon return from the invocation. Normal CSFCKDS
processing applies.

380 4 Installation data.

The address of the data specified on the INSTDATA keyword
of the KGUP control statement. The address of the area is
zero if a SET control statement has not been processed. “The
SET Statement” on page 119 describes how to use the field in
greater detail.

118 z/OS V1R3.0 ICSF System Programmer’s Guide

Table 17. KGXP Control Block Format (continued)

Offset
(Dec)

Number of
Bytes Description

384 4 Installation exit area.

The address of an area set by the installation that is
preserved across all invocations of the exit. The first byte of
the area contains the length of the area (including the length
byte). After KGUP completes, the first 64 bytes of the area are
written to the SMF data set. The exit has exclusive control of
modifying this area. The area is only used as input to SMF
processing upon completion of KGUP.

The SET Statement
Use the SET control statements to specify data to send to a KGUP installation exit.
For a more detailed description of the SET statement, see z/OS ICSF
Administrator’s Guide.

The installation data field in KGXP (offset +364) contains the address of the data
SET statement specifies. Data that is specified on a SET statement can be
especially useful if you alter key entries. You may want to keep track of the entries
you change by putting the original data and the changed data in the installation
data area.

Return Codes
You can pass a return code back to KGUP in the KGXP control block (offset +8).
The exit can use the return code to cause KGUP to reject control statements or to
end KGUP. Return code values, in decimal, for record pre- or postprocessing exit
calls are:

Return Code Description
0 Normal, continue processing.
4 Reject control statement, but do not end KGUP.
8 End KGUP.

All other return codes are not valid and cause KGUP to end.

Return code values, in decimal, for the KGUP pre- or postprocessing invocations
are:

Return Code Description
0 Normal, continue processing.
>0 End KGUP.

Chapter 7. Installation Exits 119

120 z/OS V1R3.0 ICSF System Programmer’s Guide

Chapter 8. Operating ICSF

Starting and Stopping ICSF . 122
Modifying ICSF . 122
Using Different Configurations 123

Configuring the S/390 Enterprise Servers, the S/390 Multiprise Server and
the IBM Eserver zSeries 123
Single Image Mode . 123
Logical Partition (LPAR) Mode 123

Disabling the Cryptographic Coprocessor Feature 125
Performance Considerations for Using Installation Options 126
VTAM Session-Level Encryption 126
Access Method Services Cryptographic Option. 126

Event Recording . 127
System Management Facilities (SMF) Recording 127

ICSF Initialization (Subtype 1) 129
ICSF Status Change (Subtype 3). 129
Error Handling for Cryptographic Coprocessor Feature (Subtype 4) . . . 129
Special Secure Mode Change (Subtype 5) 130
Master Key Part Entry (Subtype 6) 130
Operation Key Part Entry (Subtype 7) 130
CKDS Refresh (Subtype 8) 130
Dynamic CKDS Update (Subtype 9) 130
PKA Key Part Entry (Subtype 10) 130
Clear New Master Key Part Entry (Subtype 11) 131
PKSC Commands (Subtype 12) 131
Dynamic PKDS Update (Subtype 13) 131
PCI Cryptographic Coprocessor Clear Master Key Entry (Subtype 14) 131
PCI Cryptographic Coprocessor Retained Key Create or Delete (Subtype

15) . 131
PCI Cryptographic Coprocessor TKE Command Request or Reply

(Subtype 16) . 132
PCI Cryptographic Coprocessor Timing (Subtype 17) 132
PCI Cryptographic Coprocessor Configuration (Subtype 18) 132

Message Recording . 132
Security Considerations . 133

Controlling the Program Environment 133
Controlling Access to KGUP 133
Controlling Access to the Callable Services 133
Controlling Access to Cryptographic Keys 134
Scheduling Changes for Cryptographic Keys 134
Controlling Access to Administrative Panel Functions 134

Debugging Aids . 135
Component Trace . 135

Examining the Trace Entry Buffer. 135
ICSF System SVC 143 . 136
Abnormal Endings . 137
IPCS Formatting Routine. 137

You use certain commands to operate ICSF. Also, there are different conditions for
operating ICSF that you should consider. This chapter describes the ICSF operating
tasks.

© Copyright IBM Corp. 1997, 2002 121

Starting and Stopping ICSF
To start ICSF, issue the operator START command. You must issue the START
command after each IPL. When you issue the START command, verification tests
check that the master key in each coprocessor is the same as the master key that
enciphered the cryptographic key data set (CKDS). Verification tests are also
performed to ensure that the PCI Cryptographic Coprocessor SYM-MK on all PCI
Cryptographic Coprocessors is the same as the DES master key on the
Cryptographic Coprocessor Features, and that the PCI Cryptographic Coprocessor
ASYM-MK on all PCI Cryptographic Coprocessors is the same as the PKA SMK on
the Cryptographic Coprocessor Features. If a master key does not match the
CKDS, the following occurs:

v ICSF starts.

v A message that indicates the verification failed for the indicated coprocessor and
CPU appears on the console.

v The Cryptographic Coprocessor Feature on the CPU for which the verification
failed is not active.

When ICSF successfully starts, a message that indicates that initialization is
complete appears on the console.

The following example shows the format of the START command to start ICSF,
assuming that CSF is the name of the start procedure:

START CSF

You can start ICSF only as a started task.

To stop ICSF, issue the operator STOP command. After you issue the command, all
ICSF processing stops. If ICSF stops successfully, a message that states that ICSF
is stopped appears on the console.

The following example shows the format of the STOP command to stop ICSF,
assuming that CSF is the name of the started procedure:

STOP CSF

Note: In general, you should not use the operator CANCEL command to end CSF
operation. Issuing the CANCEL command does not take the cryptographic
feature offline. You can cancel CSF and then restart CSF. This is unlike the
Programmed Cryptographic Facility (PCF), which cannot be stopped and
restarted.

Modifying ICSF
When you issue the MODIFY command, ICSF gives control to the installation exit
CSFEXIT5, if it exists. Your installation can write an exit routine for CSFEXIT5 that
changes ICSF operations. For example, you might have the installation exit change
the CHECKAUTH and KEYAUTH installation options without having to stop and
restart ICSF. See Chapter 7, “Installation Exits” on page 75 for a description of the
installation exits.

If your installation does not write an exit routine for CSFEXIT5, no action occurs
when you enter the MODIFY command.

122 z/OS V1R3.0 ICSF System Programmer’s Guide

Using Different Configurations
A central processor complex can have up to two cryptographic features. If you have
a processor complex with more than one cryptographic feature, you can configure
the complex to run in one of several modes, depending on your central processor
hardware. This section describes the different configurations available.

Configuring the S/390 Enterprise Servers, the S/390 Multiprise Server
and the IBM Eserver zSeries

The Cryptographic Coprocessor Feature can include up to two cryptographic
coprocessors, each of which is attached to a central processor within the central
processor complex. Each cryptographic coprocessor, or crypto CP, has sixteen
master key register sets, referred to as domains. ICSF uses the domain usage
index to access each domain. You can configure the complex to run in one of the
following modes:
v Single image mode
v Logical partition mode

Single Image Mode
In single image mode, the processor complex has access to the same domain on
both Crypto CP 0 and Crypto CP 4. The domain is specified in the installation
options data set. Beginning in z/OS V1 R2, the DOMAIN parameter is optional. It is
required if more than one domain is specified as the usage domain on the PR/SM
panels or if running in native mode. See “Changing Parameters in the Installation
Options Data Set” on page 20 for additional information on the DOMAIN parameter.
The accessed domain on both coprocessors must have the same master key.
Figure 9 shows an example single image mode configuration.

Logical Partition (LPAR) Mode
You can divide your processor complex into PR/SM logical partitions (LPARs).
When you create logical partitions on your processor complex, you use the usage
domain index on the Support Element Customize Image Profile page to enable
access to a Crypto CP domain. The number that is specified for the usage domain
index must correspond to the domain number you specify with the DOMAIN(n)

Domain 0
Key A

Domain 1

Domain 2

Domain 15

= =

Crypto CP 0
Coprocessor 0

Domain 0
Key A

Domain 1

Domain 2

Domain 15

= =

Crypto CP 4
Coprocessor 1

Operating System

Processor Complex

Figure 9. Two Crypto CPs on a Processor Complex Running in Single Image Mode

Chapter 8. Operating ICSF 123

keyword in the installation options data set. Beginning in z/OS V1 R2, the DOMAIN
parameter is optional. It is required if more than one domain is specified as the
usage domain on the PR/SM panels or if running in native mode. See “Changing
Parameters in the Installation Options Data Set” on page 20 for additional
information on the DOMAIN parameter.

You can assign more than one domain to an LPAR, but you must use a unique
installation options data set to define each domain. Assigning more than one
domain to an LPAR makes it possible to have separate master keys for different
purposes. For example, you might have one master key for production operations
and a different master key for test operations.

The PCI Cryptographic Coprocessor can be configured like a Cryptographic
Coprocessor Feature. It can be dedicated or shared across multiple partitions with
each card supporting up to 16 domains.

When using logical partitions, there is no domain sharing unless TKE is being used.
The ’HOST’ LPAR can control the domains of the other LPARS if the control domain
for the first LPAR is setup for it. The example in Figure 10 on page 125 shows that
LPAR 1 has access to Domain 0 on Crypto CP 0, Crypto CP 1, and PCICC. LPAR
2 has access to Domain 1 and Domain 2 on both Crypto CPs and on the PCICC.
LPAR 1 cannot access Domain 1 or Domain 2 on the PCICC or on either of the
Crypto CPs. Likewise, LPAR 2 cannot access Domain 0 on either Crypto CP or the
PCICC. The ICSF system running on the operating system in LPAR 2 has access to
only one domain at any particular time, as specified in the installation options data
set.

124 z/OS V1R3.0 ICSF System Programmer’s Guide

Disabling the Cryptographic Coprocessor Feature
For S/390 Enterprise and S/390 Multiprise servers that support TKE, cryptographic
functions can be disabled through the ECM function. This places the Cryptographic
Coprocessor Feature in standby mode. The functions can be brought out of standby
mode by enabling the cryptographic function bit in the ECM through TKE.

Note: With z/OS V1 R3, status displayed on the hardware status panel will no
longer be STANDBY. It will now show DISABLED.

The Coprocessor Management Panel allows you to deactivate/activate a PCI
Cryptographic Coprocessor. With TKE V3.0 or higher, you can also disable/enable
the PCI Cryptographic Coprocessor. When a PCI Cryptographic Coprocessor is
deactivated through the Coprocessor Management Panel, the card is only

Domain 0
Key B

Domain 1
Key C

Domain 2
Key D

Domain 15

= =

Crypto CP 0
Coprocessor 0

Domain 0
Key B

Domain 1
Key C

Domain 2
Key D

Domain 15

= =

PCICC

Domain 0
Key B

Domain 1
Key C

Domain 2
Key D

Domain 15

= =

Crypto CP 1
Coprocessor 1

Operating
System

LPAR 1

Operating
System

LPAR 2

Processor Complex

Figure 10. Three Crypto CPs on a Processor Complex Running in LPAR Mode

Chapter 8. Operating ICSF 125

|
|

|
|
|
|

deactivated for that one LPAR. When a PCI Cryptographic Coprocessor is disabled
by TKE, the card is disabled for the entire system, not just the LPAR that issued the
disable.

Performance Considerations for Using Installation Options
You specify installation options in the installation options data set. Two installation
options, CHECKAUTH and KEYAUTH, provide additional security checking, but
affect performance.

In ICSF, the Security Server (RACF) always checks non-Supervisor State callers.
The CHECKAUTH option allows you to specify whether CSF performs access
control checking of Supervisor State and System Key callers. Specify
CHECKAUTH(NO) if you do not want CSF to check Supervisor State and System
Key callers. Specify CHECKAUTH(YES) if you want CSF to check Supervisor State
callers. Checking Supervisor State and System Key callers significantly affects
performance.

The KEYAUTH option allows you to specify whether ICSF should authenticate an
entry in the CKDS whenever ICSF accesses the entry. ICSF creates a message
authentication code (MAC) for each entry in the CKDS and stores the MAC with the
entry. Whenever ICSF retrieves an entry from the CKDS, ICSF uses the MAC to
authenticate the entry. When ICSF authenticates the entry, ICSF verifies that the
entry was not inadvertently changed or damaged. If the authentication fails, ICSF
returns either a return code with a reason code or message.

You specify KEYAUTH(NO) for ICSF not to authenticate an entry or
KEYAUTH(YES) for ICSF to authenticate an entry. The authentication has a small
impact on performance. The chance of an error occurring in the in-storage CKDS is
minimal. However, the authentication might be useful for diagnostic purposes if an
error occurs.

See “Create the Installation Options Data Set” on page 12 and “Changing
Parameters in the Installation Options Data Set” on page 20 for more information.

VTAM Session-Level Encryption
ICSF supports VTAM session-level encryption. VTAM session-level encryption
provides protection for messages within SNA sessions; that is, between pairs of
logical units that support their respective end users. When this method of protection
is in effect, data is enciphered by the originating logical unit and deciphered only by
the destination logical unit. Thus, the data never appears in the clear while passing
through the network.

ICSF places no restrictions on the addressing mode of calling programs. In
particular, when VTAM session-level encryption is used with ICSF, VTAM can use
storage above 16 megabytes.

Access Method Services Cryptographic Option
In compatibility mode, ICSF supports the Access Method Services Cryptographic
Option. The option enables the user of the Access Method Services REPRO
command to use the Data Encryption Algorithm to encipher data.

The Access Method Services user can use REPRO to encipher data that is written
to a data set, and then store the enciphered data set offline. When desired, you can
bring the enciphered data set back online, and use REPRO to decipher the

126 z/OS V1R3.0 ICSF System Programmer’s Guide

|
|
|

enciphered data. You can decipher the data either on the host processor on which it
was enciphered, or on another host processor that contains the Access Method
Services Cryptographic Option and the same cryptographic key that was used to
encipher the data. You can either use ICSF to create the cryptographic keys, or use
keys that the Access Method Services user supplies.

With the exception of catalogs, all data set organizations that are supported for
input by REPRO are eligible as input for enciphering. Similarly, with the exception of
catalogs, all data set organizations supported for output by REPRO are eligible as
output for deciphering. The resulting enciphered data sets are always sequentially
organized (SAM or VSAM entry-sequenced data sets).

Event Recording
ICSF records certain ICSF events in the System Management Facilities (SMF) data
set. ICSF also sends messages that are generated during processing to diagnostic
data sets and consoles. The SMF recording and messages help you detect
problems and track events. This chapter describes the events that ICSF records in
the SMF record and describes where ICSF sends certain messages.

System Management Facilities (SMF) Recording
ICSF uses SMF record type 82 to record certain ICSF events. Record type 82
contains a fixed header section and subtypes. Each subtype contains information
about the event that caused ICSF to write to the SMF record.

You can map record type 82 by using the CSFSMF82 macro. z/OS MVS System
Management Facilities (SMF) describes the format of record type 82.

ICSF records information in the SMF data set when the following events occur:

v ICSF starts

v ICSF status changes on a processor

v ICSF handles error conditions for Cryptographic Coprocessor Feature failure or
tampering

v You enable or disable special secure mode

v You enter a master key part

v You use the ICSF panels to process an operational key loaded using the TKE
workstation

v TKE commands and responses are all audited through SMF 82 (TKE commands
on the Cryptographic Coprocessor Feature are CSFPKSC. TKE commands on
the PCI Cryptographic Coprocessor use CSFPCI.)

v The in-storage cryptographic key data set (CKDS) is refreshed

v A dynamic change is made to the PKDS

v You use the ICSF panels to update the new master key register on a PCI
Cryptographic Coprocessor

v You create or delete a retained key on a PCI Cryptographic Coprocessor

v The TKE workstation issues a PCI Cryptographic Coprocessor command request
or receives a reply response from a PCI Cryptographic Coprocessor

v ICSF records processing times for PCI Cryptographic Coprocessors

v A PCI Cryptographic Coprocessor is either brought on line or taken off line

Each of these events causes ICSF to record information in a separate subtype in
the SMF record.

Chapter 8. Operating ICSF 127

Recording and Formatting type 82 SMF Records in a Report - Beginning in
z/OS V1 R3, the following sample jobs are available (in SYS1.SAMPLIB) to assist
in the recording and formatting of type 82 SMF data:

v CSFSMFJ - JCL that executes the code to dump and format SMF type 82
records for ICSF. Before executing the JCL, you need to make modifications to
the JCL (see the prologue in the sample for specific instructions). After the JCL
has been modified, terminate SMF recording of the currently active dump dataset
(by issuing I SMF) to allow for the unloading of SMF records. After SMF
recording has been terminated, execute the JCL. The output goes into the held
queue. The following is an example of CSFSMFJ.
//CSFSMFJ JOB <CARD PARAMETERS>
//**
//* LICENSED MATERIALS - PROPERTY OF IBM *
//* 5694-A01 *
//* (C) COPYRIGHT IBM CORP. 2002 *
//* *
//* This JCL reads Type 82 SMF records and formats them in a report.*
//* *
//* CAUTION: This is neither a JCL procedure nor a complete JOB. *
//* Before using this JOB step, you will have to make the following *
//* modifications: *
//* *
//* 1) Add the job parameters to meet your system requirements. *
//* 2) Change the DUMPIN DSN=hlq.smfdata.input to be the name of *
//* the dataset where you currently have SMF data being *
//* recorded. *
//* 3) Change the STEPLIB VOL=SER=ttttt1 and VOL=SER=ttttt2 to *
//* be the volumes where these sort datasets reside. *
//* 4) Change the SYSPROC DSN=hlq.rexx.dataset to be the name of *
//* the dataset where you have placed the CSFSMFR REXX sample. *
//* *
//* Prior to executing this job, you need to terminate SMF *
//* recording of the currently active dump dataset for allow the *
//* unload of SMF records. *
//* *
//**
//*
//*--*
//* UNLOAD SMF 82 RECORDS FROM VSAM TO VBS *
//*--*
//SMFDMP EXEC PGM=IFASMFDP
//DUMPIN DD DISP=SHR,DSN=hlq.smfdata.input
//DUMPOUT DD DISP=(NEW,PASS),DSN=&&VBS,UNIT=3390,
// SPACE=(CYL,(1,1)),DCB=(LRECL=32760,RECFM=VBS,BLKSIZE=4096)
//SYSPRINT DD SYSOUT=*
//SYSIN DD *

INDD(DUMPIN,OPTIONS(DUMP))
OUTDD(DUMPOUT,TYPE(82))

//*
//*--*
//* COPY VBS TO SHORTER VB AND SORT ON DATE/TIME *
//*--*
//COPYSORT EXEC PGM=SORT,REGION=6000K
//STEPLIB DD DISP=SHR,DSN=SYS1.SORTLPA,VOL=SER=ttttt1,UNIT=3390
// DD DISP=SHR,DSN=SYS1.SICELINK,VOL=SER=ttttt2,UNIT=3390
//SYSOUT DD SYSOUT=*
//SORTWK01 DD UNIT=3390,SPACE=(CYL,10)
//SORTIN DD DISP=(OLD,DELETE),DSN=&&VBS
//SORTOUT DD DISP=(NEW,PASS),DSN=&&VB,UNIT=3390,
// SPACE=(CYL,(1,1)),DCB=(LRECL=3000,RECFM=VB)
//SYSIN DD *
SORT FIELDS=(11,4,D,7,4,D),FORMAT=BI,SIZE=E4000
//*
//*--*
//* FORMAT TYPE 82 RECORDS *

128 z/OS V1R3.0 ICSF System Programmer’s Guide

|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

//*--*
//FMT EXEC PGM=IKJEFT01,REGION=5128K,DYNAMNBR=100
//SYSPROC DD DISP=SHR,DSN=hlq.rexx.dataset
//SYSTSPRT DD SYSOUT=*
//INDD DD DISP=(OLD,DELETE),DSN=&&VB
//OUTDD DD SYSOUT=*
//SYSTSIN DD *

%CSFSMFR

v CSFSMFR - An EXEC that formats the SMF records into a readable report.

ICSF Initialization (Subtype 1)
When ICSF starts, ICSF writes to subtype 1 after initialization is completed.
Subtype 1 describes the values of installation options that are specified in the
installation options data set.

Subtype 1 contains the following information:

v Special secure mode (SSM) option

v Key authentication (KEYAUTH) option

v Security Server (RACF) checking of Supervisor State and System Key callers
(CHECKAUTH) option

v Compatibility mode with CUSP or PCF (COMPAT) option

v Cryptographic domain number (DOMAIN) option

v Number of trace entries (TRACEENTRY) option

v CKDS name (CKDSN) option

v Maximum length for data in a callable service (MAXLEN) option

Beginning with z/OS V1 R2, the MAXLEN parameter may still be specified in the
options data set, but only the maximum value limit will be enforced
(2147483647). If a value greater than this is specified, an error will result and
ICSF will not start.

v Compatibility encryption algorithm (COMPENC) option

v User parameter (USERPARM) option

v PKDS name (PKDSN) option

ICSF Status Change (Subtype 3)
ICSF writes to subtype 3 when processors are verified at initialization, after a
master key is set or changed, when ICSF switches from stand-by mode to normal
mode, or when a processor comes online or offline. When processor status
changes, subtype 3 gives the status of the processors still online.

Subtype 3 contains the following information:
v Processor number
v Coprocessor number
v Cryptographic domain number
v Master key version number

If a master key change or set occurs, subtype 3 also contains the following
information:
v Master key verification pattern
v Old master key verification pattern, if an old master key exists
v New master key verification pattern, if a new master key exists

Error Handling for Cryptographic Coprocessor Feature (Subtype
4)
ICSF writes to subtype 4 when the Coprocessor is in standby mode or when the
Cryptographic Coprocessor Feature detects tampering.

Chapter 8. Operating ICSF 129

|
|
|
|
|
|
|
|

|

Subtype 4 contains the following information:
v Status word from the Cryptographic Coprocessor Feature
v Processor number
v Cryptographic domain number

Special Secure Mode Change (Subtype 5)
Subtype 5 contains special secure mode status bit. ICSF writes to subtype 5 when
the status of special secure mode changes. ICSF also updates subtype 5 when the
Cryptographic Coprocessor Feature indicates that special secure mode was
required for an instruction, but was not enabled.

Master Key Part Entry (Subtype 6)
ICSF writes to subtype 6 when master key parts are entered using TKE workstation
and are processed using the TKE master key entry ICSF panels. Subtype 6
contains the following information:
v The verification pattern for the master key part
v A bit indicating whether the verification pattern is valid
v The Coprocessor number
v The cryptographic domain number

If you enter the final master key part, the record also contains the verification
pattern for the entire master key and a bit indicating whether the verification pattern
is valid.

Operation Key Part Entry (Subtype 7)
ICSF writes to subtype 7 when key parts are entered using the TKE workstation
and are processed using the operational key entry ICSF panels. Subtype 7 contains
the following information:
v The verification pattern for the key part
v A bit indicating whether the verification pattern is valid
v The cryptographic domain number
v The Coprocessor number
v The name of the CKDS that contains the entry with the key part
v The label of the CKDS entry that contains the key part

CKDS Refresh (Subtype 8)
ICSF writes to subtype 8 when the in-storage CKDS is successfully refreshed. ICSF
refreshes the in-storage CKDS by reading a disk copy of a CKDS into storage.
Subtype 8 contains the following information:

v Name of the current in-storage CKDS that ICSF refreshes

v Name of the disk copy of the CKDS that ICSF read into storage to replace the
current CKDS

Dynamic CKDS Update (Subtype 9)
ICSF writes to subtype 9 when an application uses the dynamic CKDS update
services to write to the CKDS. Subtype 9 contains the following information:
v Name of the changed CKDS
v The operation performed
v The CKDS entry (which includes the label name and key type) that was changed

PKA Key Part Entry (Subtype 10)
ICSF writes to subtype 10 when you use the ICSF panels to enter PKA master key
parts. Subtype 10 contains the following information:
v An indication of which PKA Master key is changing; the Signature Master Key

(SMK), or the Key Management Master Key (KMMK)
v An indication of whether the following hash pattern of the PKA master key

register is valid (It is valid when the final key part is entered.)

130 z/OS V1R3.0 ICSF System Programmer’s Guide

v The hash pattern (MDC-4) of the PKA master key register
v The hash pattern of PKA key part
v The Coprocessor number
v Current cryptographic domain

If no DES master key has been validated, the key part entries do not contain a
hash pattern. The record for the final key contains the hash pattern of the complete
key.

Clear New Master Key Part Entry (Subtype 11)
ICSF writes to subtype 11 when you use the ICSF panels to enter new master key
parts. Subtype 11 contains the following information:
v An indication of whether the following hash pattern of the new master key master

key register is valid (It is valid when the final key part is entered.)
v An indication of whether the following verification pattern of the new master key

master key register is valid (It is valid when the final key part is entered.)
v The hash pattern of the new master key register
v The verification pattern of the new master key register
v The hash pattern of new master key part
v The verification pattern of new master key part
v The Coprocessor number
v Current cryptographic domain

If no DES master key has been validated, the key part entries do not contain a
verification pattern and hash pattern. The record for the final key contains the
verification pattern and hash pattern of the complete key.

PKSC Commands (Subtype 12)
ICSF writes to subtype 12 for every PKSC command entered through the
CSFPKSC interface. Subtype 12 contains the following information:
v The complete PKSC request
v The corresponding PKSC response

Dynamic PKDS Update (Subtype 13)
ICSF writes to subtype 13 when an application uses the dynamic PKDS update
services to change the PKDS. Subtype 13 contains the following information:
v The name of the changed PKDS
v The operation performed
v The name of the changed entry in the PKDS

PCI Cryptographic Coprocessor Clear Master Key Entry (Subtype
14)
ICSF writes to subtype 14 whenever you use ICSF panels to update SYM-MK and
ASYM-MK in the new master key register in a PCI Cryptographic Coprocessor.
Subtype 14 contains the following information:
v The master Key (SYM-MK or ASYM-MK; NMK or key part) valid indicator
v The new master key verification pattern
v The key part verification pattern
v The PCI Cryptographic Coprocessor processor number
v The PCI Cryptographic Coprocessor serial number
v The domain index

PCI Cryptographic Coprocessor Retained Key Create or Delete
(Subtype 15)
ICSF writes to subtype 15 whenever you create or delete a retained private key in a
PCI Cryptographic Coprocessor. Subtype 15 contains the following information:
v The operation performed (created, deleted from PCI, deleted from PKDS)

Chapter 8. Operating ICSF 131

v The retained key label
v The PCI Cryptographic Coprocessor processor number
v The PCI Cryptographic Coprocessor serial number
v The domain index

PCI Cryptographic Coprocessor TKE Command Request or
Reply (Subtype 16)
ICSF writes to subtype 16 whenever a TKE workstation either issues a command
request to a PCI Cryptographic Coprocessor or receives a reply response from a
PCI Cryptographic Coprocessor. Subtype 16 contains the following information:
v The indicator for request or reply
v The PCI Cryptographic Coprocessor processor number
v The PCI Cryptographic Coprocessor serial number
v The PCI Cryptographic Coprocessor domain index
v The request command block or reply response block length
v The request command data block or reply response data block length
v The request or reply CPRB

PCI Cryptographic Coprocessor Timing (Subtype 17)
ICSF periodically records processing times for PCI Cryptographic Coprocessor
operations in subtype 17. Subtype 17 contains the following information:
v The time immediately before the operation begins
v The time immediately after the operation ends
v The time immediately after the results of the operation have been communicated

to the caller address space
v The number of processes waiting to submit work to the same PCI Cryptographic

Coprocessor, domain, and reference slot used by this operation
v The function code for this operation
v The PCI Cryptographic Coprocessor processor number
v The PCI Cryptographic Coprocessor serial number
v The PCI Cryptographic Coprocessor domain
v A reference number that identifies an internal ICSF queue element

PCI Cryptographic Coprocessor Configuration (Subtype 18)
ICSF writes subtype 18 when a PCI Cryptographic Coprocessor is brought online or
taken offline. Subtype 18 contains the following information:
v The operation performed (PCI brought online or taken offline)
v The PCI Cryptographic Coprocessor processor number
v The PCI Cryptographic Coprocessor serial number

Message Recording
ICSF writes messages to data sets and consoles. You can view some messages
immediately as they appear on the console, and you can view messages in the
data sets.

ICSF writes messages for ICSF mainline processing, key generator utility program
(KGUP) processing, and conversion program processing to separate data sets.
When the ICSF main task has an abnormal end, messages appear in a data set
that you define using the CSFLIST DD statement in the ICSF startup procedure.
KGUP processing messages appear in the KGUP diagnostic data set that you
define using the CSFDIAG DD statement in the job control language to run KGUP.
Conversion program messages appear in the conversion program activity report
data set that you define using the CSFVRPT DD statement in the job control
language to run the conversion program.

132 z/OS V1R3.0 ICSF System Programmer’s Guide

ICSF mainline also issues certain messages to the security console and operator
console. Messages with a routing code of 9 appear on the security console.
Messages with a routing code of 1 appear on the operator console. If a message
does not have a routing code, it appears in the CSFLIST data set.

For a description of each ICSF message and its routing code, see z/OS ICSF
Messages.

Security Considerations
You can provide enhanced security on ICSF by controlling access to resources and
changing the values of your keys periodically. This chapter describes the following
aspects of security:
v Controlling access to the key generator utility program (KGUP)
v Controlling access to the callable services
v Controlling access to cryptographic keys
v Scheduling changes for cryptographic keys
v Controlling access to panel functions

Controlling the Program Environment
Some programs or applications which use ICSF require that the environment be
program controlled. In a program controlled environment, programs within the
address space are defined to the Security Server (RACF). Defining a program to
RACF requires the program name and the name of the data set which contains the
program.

The commands to define the ICSF load module to RACF are:
RDEFINE PROGRAM * ADDMEM(’CSF.SCSFMOD0’//NOPADCHK) UACC(READ)
SETROPTS WHEN(PROGRAM) REFRESH

Additional detains on program control may be found in the ″Program Control″
section of the z/OS Security Server RACF Security Administrator’s Guide.

Controlling Access to KGUP
Anyone running the key generator utility program can read and alter an unprotected
cryptographic key data set (CKDS). Therefore, only authorized users should have
access to the key generator utility program. To make it difficult for an unauthorized
person to execute the key generator utility program, store the program in an
APF-authorized library that is protected by the Security Server (RACF).

Controlling Access to the Callable Services
Unauthorized persons should not perform the cryptographic or key management
functions that the callable services provide. The security administrator should be the
only one able to access some services like those used in managing keys. The
security administrator can give access to some services, such as enciphering and
deciphering data, to persons who are authorized on the system.

You can use the Security Server (RACF) to control which users can use ICSF
callable services. For example, you can use the key export service to export any
type of key. Your installation may want only the security administrator to be able to
use the key export function.

ICSF provides security exit points that you can use to control access to a callable
service. (In ICSF/MVS Version 2 Release 1 the IBM-supplied security exit routines

Chapter 8. Operating ICSF 133

were removed, but the exit points still remain.) For information about the security
exit points, see “Security Installation Exits” on page 105.

Your installation may want other users to just be able to export data keys, because
sending encrypted data between systems is a common function. The data key
export callable service permits the export of data keys only. Your security
administrator can have access to the key export service and can use the Security
Server (RACF) to give other users access to the data key export service. For more
information on controlling who can use ICSF callable services, see z/OS ICSF
Administrator’s Guide.

Access control points for specific functions may be enabled/disabled through the
TKE workstation. See “Access to Callable Services” on page 50 and the z/OS ICSF
TKE Workstation User’s Guide 2000, SA22-7524 for additional information.

Controlling Access to Cryptographic Keys
Besides the key generator utility program and services, your installation should also
control access to the cryptographic keys. First, it is highly recommended that you
store cryptographic keys in data sets that are protected by RACF or an equivalent
product. You should limit access to authorized persons or applications. Second, you
can use RACF to control access to keys in the in-storage cryptographic key data
set. For more information on protecting cryptographic keys, see z/OS ICSF
Administrator’s Guide.

ICSF also provides security exit points that you can use to control access to keys in
the in-storage CKDS and in the PKDS. For information about the security exit
points, see “Security Installation Exits” on page 105.

Scheduling Changes for Cryptographic Keys
You should periodically change the value of cryptographic keys to reduce the
possibility of exposing a key value. It is recommended that you change the DES
master key at least every 12 months.

The security administrator can use the key generator utility program (KGUP) to
change the cryptographic keys. KGUP updates keys in the disk copy of the
cryptographic key data set while the callable services access keys in the in-storage
copy of the cryptographic key data set. Therefore, you can change the keys without
affecting cryptographic operations. For more information on using KGUP, refer to
z/OS ICSF Administrator’s Guide.

Controlling Access to Administrative Panel Functions
You can perform many ICSF administration functions by using the TSO panels.
RACF can protect access to these functions. The functions include:
v Refreshing the CKDS
v Setting the master key
v Changing the master key

Additionally, for S/390 Enterprise Servers, S/390 Multiprise servers, and IBM
Eserver zSeries, the following functions are also protected:
v Clear key entry (access can also be controlled through the TKE workstation,

domain controls)
v Passphrase MK/CKDS initialization

Security Considerations

134 z/OS V1R3.0 ICSF System Programmer’s Guide

v User control functions (enabling and disabling dynamic CKDS access, PKA
callable services, PKDS read access, and PKDS write, create, and delete
access)

These functions are treated the same way as callable services. See z/OS ICSF
Administrator’s Guide for more information.

Debugging Aids
This chapter contains information you can use when diagnosing problems on ICSF.
This chapter describes:
v Component trace
v ICSF SVC 143
v Abnormal endings
v Using the IPCS formatting routine

Component Trace
The ICSF component trace is written to a single buffer that is addressed from the
ICSF CCVE. This buffer contains the number of entries you specify in the
installation options data set TRACEENTRY parameter. If you do not specify this
installation option, the default is 1000. Each entry is 96 bytes long. When the buffer
is full, the trace is wrapped.

Examining the Trace Entry Buffer
To examine the trace buffer, use the CTRACE facility of the Interactive Problem
Control System (IPCS) in either batch or online mode.

CSF TRACE Common Header: The following items are present in every trace
entry:
ASCB@ Address of the (application) ASCB
TCB@ Address of the (application) TCB
ASID Application’s address space identifier

These items are omitted in the IPCS trace SUMMARY output, and the type-specific
data appears after this common header.

Service and Exit Trace Entry Types: ICSF component trace is always active,
and the following types of trace entries are always written to the buffer:
BSERVICE: Before the call to service
ASERVICE: After the call to service
BEXIT: Before the call to exit
AEXIT: After the call to exit

Type-Specific Data for Service Trace Entries: The following items are traced for
BSERVICE and ASERVICE entries:
Module: Name of the service called
Rcode: Return code from the service
Reason: Reason code from the service

Rcode and Reason are meaningless for BSERVICE.

These items appear in both IPCS SUMMARY and IPCS FULL output, and the exit
trace entries are not called.

Security Considerations

Chapter 8. Operating ICSF 135

Instruction Trace Entry Types: You can activate the following instruction trace
entries, in addition to the service and exit trace entry information that is always
provided:
BCRYPTO: Before the cryptographic instruction
ACRYPTO: After the cryptographic instruction

To activate the ICSF component trace for instruction trace entries, use the following
TRACE ON command:

TRACE CT,ON,COMP=CSF

Follow the TRACE ON command with this reply:
R nn,END

To deactivate instruction trace entries, use the following TRACE OFF command:
TRACE CT,OFF,COMP=CSF

Type-Specific Data for Instruction Trace Entries: The following items are traced for
BCRYPTO and ACRYPTO entries:
GPRnn: General Registers 0–13
ARnn: Access Registers 3 and 8
Instruction: The cryptographic instruction

These items appear in both IPCS SUMMARY and IPCS FULL output.

The precise meanings of the register differ for each cryptographic instruction.
Indeed, the registers GPR10-GPR13 are not used by any cryptographic instruction.
However, the more common registers are:

GPR00 Function called (for example, for CMD, encipher or decipher).

GPR01 Cryptographic status (only valid for ACRYPTO).

GPR02 Address of the local instruction parameter block. The length and
usage of the parameter block differ from instruction to instruction
and the usage from function to function within the instruction.

GPR03 Address of output text when this is of variable length (for example,
ciphertext for encipher command).

GPR08 Address of input text when this is of variable length (for example,
plain text for encipher command).

AR03 Access Register 3 (only useful if GPR03 is useful).

AR08 Access Register 8 (only useful if GPR08 is useful).

ICSF System SVC 143
SVC 143 (0A8F) is an ICSF system SVC that is used by CUSP and PCF macros
(GENKEY, RETKEY, CIPHER, and EMK) for SVC entry into ICSF. The SVC allows
you to run a CUSP or PCF application on ICSF. See “Running CUSP/PCF and
z/OS ICSF on the Same System” on page 31 for more information about running
CUSP and PCF applications on ICSF.

SVC 143 is a type 4 SVC and does not get a lock. The General Trace Facility data
is:

R15 and R0 No applicable data.

R1 Address of the parameter list. The macro that is called determines
the parameter list.

Security Considerations

136 z/OS V1R3.0 ICSF System Programmer’s Guide

Abnormal Endings
ICSF has an abnormal ending in only the following cases:
v When an error occurs during ICSF initialization
v When you specify FAIL(ICSF) in the callable service exit installation option
v When the setting of a cryptographic domain index fails

If an abnormal end occurs in any other cases, your application or unit of work ends;
however, ICSF is still available.

ICSF has an abnormal end code unique to ICSF. Errors specific to ICSF result in an
abnormal end code of X'18F' and a unique reason code. In general, all abnormal
ends occurring within ICSF result in an appropriate system dump, user dump, or
LOGREC recording.

Review the reason code to see if the abnormal end was an installation or user
error. For a list of the reason codes for abnormal end code X'18F', refer to z/OS
MVS System Codes. If you cannot resolve the problem, save the dump and contact
the IBM Support Center.

IPCS Formatting Routine
You can use the Interactive Problem Control System (IPCS) to format and display
the certain ICSF control blocks. The IPCS CBFORMAT command displays the
control block’s eye-catcher name, its location in the address space, and its field
names with their offsets. You specify a symbol with the command to identify the
control block. Table 18 lists the control blocks you can display, the symbol IPCS
recognizes for each control block, and a reference for the control block format.

Table 18. IPCS Symbols and Format References for the ICSF Control Blocks

Control Block Symbol Format Reference

Installation-defined Service Table CSFMGST Varies for each installation.

CSF Exit Name Table CSFENT See Table 7 on page 85.

Cryptographic Communication
Vector Table

CSFCCVT See Table 35 on page 158.

Cryptographic Communication
Vector Table Extension

CSFCCVE See Table 36 on page 163.

Secondary Parameter Block CSFASPB See Table 11 on page 94.

For example, to format and display the ICSF Exit Name table issue the following
command:

CBFORMAT CSFENT

Instead of using a symbol to identify the control block, you can provide an address.
Find and specify the address of the control block in the address space at the time
of the dump. When you specify an address, you must also specify the
STRUCTURE keyword with the control block symbol.

Note: To format the secondary parameter block, you must provide an address to
identify the control block.

For example, if the address of the secondary parameter block is F632D0, issue the
following command to format the secondary parameter block.

CBFORMAT F632D0. STRUCTURE(CSFASPB)

Security Considerations

Chapter 8. Operating ICSF 137

In the example, the secondary parameter block is located at address F632D0 in the
address space at the time of the dump. On the command, you must put a period
after the address. With this control block, you also specify the structure keyword
with the symbol CSFASPB.

For more information about using the CBFORMAT command, see z/OS MVS IPCS
User’s Guide.

Security Considerations

138 z/OS V1R3.0 ICSF System Programmer’s Guide

Appendix A. Diagnosis Reference Information

This appendix contains Diagnosis, Modification, or Tuning Information.

This appendix contains descriptions of the cryptographic key data set (CKDS), the
public key data set (PKDS), PKA key tokens, the Cryptographic Communication
Vector Table (CCVT), and Cryptographic Communication Vector Table Extension
(CCVE) data areas.

For more information about key tokens, refer to z/OS ICSF Application
Programmer’s Guide.

Cryptographic Key Data Set (CKDS) Format

Programming Interface information

The CKDS includes a header record, data set record, and an internal DES key
token record. Tables in the following sections show the format of each of these
records.

Format of the CKDS Header Record
Table 19 presents the format of the CKDS header record.

Table 19. Cryptographic Key Data Set Header Record Format

Offset (Dec)
Number of
Bytes Field Name Description

0 72 Constant The field is set to binary zeros and is not used for the
header record.

72 8 Creation date The date the CKDS was initialized in the format yyyymmdd.

80 8 Creation time The initial time the CKDS was created in the format
hhmmssth.

88 8 Last update date The most recent date the CKDS was updated, in the format
yyyymmdd.

96 8 Last update time The most recent time the CKDS was updated, in the format
hhmmssth.

104 2 Sequence number Initially zero in binary. Incremented each time the data set
is processed.

106 2 CKDS header flag
bytes

Flag bytes.

Bit Meaning When Set On

0 The master key verification pattern is
valid.

1 The master key authentication pattern is
valid.

2–7 Reserved.
Note: After the bits are set on, the given values remain
constant in ICSF.

108 8 Master key
verification pattern

The system master key verification pattern.

© Copyright IBM Corp. 1997, 2002 139

Table 19. Cryptographic Key Data Set Header Record Format (continued)

Offset (Dec)
Number of
Bytes Field Name Description

116 8 Master key
authentication
pattern

The system master key authentication pattern.

124 72 Reserved The field is set to binary zeros.

196 52 Installation data Installation data associated with the CKDS record, as
supplied by an installation exit.

248 4 Authentication code The code generated by the authentication process that
ensures that the CKDS record has not been modified since
the last update. The authentication code is placed in the
CKDS header record when the CKDS is initialized. ICSF
verifies the CKDS header record authentication code
whenever a CKDS is reenciphered, refreshed, or converted
from CUSP/PCF to ICSF format.

Format of the CKDS Record
Table 20 presents the format of each data set record.

Table 20. Cryptographic Key Data Set Record Format

Offset (Dec)
Number of
Bytes Field Name Description

0 64 Key label The key label specified by the KGUP control statement or
Clear Key Input panel when the record was created. When
using KGUP and the callable services, you can specify the
label to identify the record. The key label is the first field of
the key index.

64 8 Key type The type of key the record contains. The master key variant
for the key type enciphers the key. A KGUP control
statement or Clear Key Input panel specifies the key type
when the record is created. The key type is the second
field of the key index.

72 8 Creation date The initial date the CKDS record was created in the format
yyyymmdd.

80 8 Creation time The initial time the CKDS record was created in the format
hhmmssth.

88 8 Last update date The most recent date the CKDS record was updated in the
format yyyymmdd.

96 8 Last update time The most recent time the CKDS record was updated in the
format hhmmssth.

104 64 Key token The internal key token. A key token contains the key value.
Refer to “Format of the DES Internal Key Token” on
page 141 for the format of the internal key token.

140 z/OS V1R3.0 ICSF System Programmer’s Guide

Table 20. Cryptographic Key Data Set Record Format (continued)

Offset (Dec)
Number of
Bytes Field Name Description

168 2 CKDS flag bytes Flag bytes.

Bit Meaning When Set On

0 The key within the key token field (offset
104) is a partial key. You can enter key
parts through the key entry hardware. A
partial key is a key whose final key part
has not been entered yet.

1 Cryptographic key token (CKT) delete.

2 CKDS label must be unique.

3–7 Reserved.
Note: When bit 0 is off, the key within the key token field
(offset 104) is an entire key.

170 26 Reserved Reserved.

196 52 Installation data Installation data associated with the CKDS record as
supplied by an installation exit.

248 4 Authentication code The code generated by the authentication process that
ensures the CKDS record has not been modified since the
last update. The authentication code is placed in the CKDS
record when the record is created. When you refresh,
reencipher, or convert a CKDS, ICSF verifies each CKDS
record as ICSF performs the action.

Format of the DES Internal Key Token
Table 21 shows the format for a DES internal key token.

Table 21. Internal Key Token Format

Bytes Description

0 X'01' (flag indicating this is an internal key token)

1–3 Implementation-dependent bytes (X'000000' for ICSF)

4 Key token version number (X'00' or X'01')

5 Reserved (X'00')

6 Flag byte

Bit Meaning When Set On

0 Encrypted key and master key verification pattern (MKVP) are present.

1 Control vector (CV) value in this token has been applied to the key.

2 Key is used for no control vector (NOCV) processing. Valid for transport keys only.

3 Key is an ANSI key-encrypting key (AKEK).

4 AKEK is a double-length key (16 bytes).
Note: When bit 3 is on and bit 4 is off, AKEK is a single-length key (8 bytes).

5 AKEK is partially notarized.

6 Key is an ANSI partial key.

7 Export prohibited.

7 Reserved (X'00')

Appendix A. Diagnosis Reference Information 141

Table 21. Internal Key Token Format (continued)

Bytes Description

8–15 Master key verification pattern (MKVP)

16–23 A single-length key, the left half of a double-length key, or Part A of a triple-length key. The value
is encrypted under the master key.

24–31 X'0000000000000000' if a single-length key, or the right half of a double-length operational key, or
Part B of a triple-length operational key. The right half of the double-length key or Part B of the
triple-length key is encrypted under the master key.

32–39 The control vector (CV) for a single-length key or the left half of the control vector for a
double-length key.

40–47 X'0000000000000000' if a single-length key or the right half of the control vector for a
double-length operational key.

48–55 X'0000000000000000' if a single-length key or double-length key, or Part C of a triple-length
operational key. Part C of a triple-length key is encrypted under the master key.

56-58 Reserved (X'000000')

59 bits 0 and 1 B'10' Indicates CDMF DATA or KEK.
B'00' Indicates DES for DATA keys or the system default algorithm for a KEK.
B'01' Indicates DES for a KEK.

59 bits 2 and 3 B'00' Indicates single-length key (version 0 only).
B'01' Indicates double-length key (version 1 only).
B'10' Indicates triple-length key (version 1 only).

59 bits 4 –7 B'0000'

60–63 Token validation value (TVV).

Note: A key token stored in the CKDS will not have an MKVP or TVV. Before such
a key token is used, the MKVP is copied from the CKDS header record and
the TVV is calculated and placed in the token. See “Token Validation Value”
for more information.

Token Validation Value
ICSF uses the token validation value (TVV) to verify that a token is valid. The TVV
prevents a key token that is not valid or that is overlaid from being accepted by
ICSF. It provides a checksum to detect a corruption in the key token.

When an ICSF callable service generates a key token, it generates a TVV and
stores the TVV in bytes 60-63 of the key token. When an application program
passes a key token to a callable service, ICSF checks the TVV. To generate the
TVV, ICSF performs a twos complement ADD operation (ignoring carries and
overflow) on the key token, operating on four bytes at a time, starting with bytes 0-3
and ending with bytes 56-59.

End of Programming Interface information

Public Key Data Set (PKDS) Format
The PKDS record includes the PKDS header and the PKA key token. Tables in the
following sections show the format of each of these records.

142 z/OS V1R3.0 ICSF System Programmer’s Guide

Format of the PKDS Header Record
Table 22. Public Key Data Set Header Record Format

Offset (Dec)
Number of
Bytes Field Name Description

0 64 PKHVKEY VSAM key of the PKDS header.

64 8 Reserved.

72 8 PKHCRDTE The date the PKDS was created in the format yyyymmdd.

80 8 PKHCRTIM The initial time the PKDS was created in the format
hhmmssth.

88 8 PKHUPDTE The most recent date the PKDS header was updated, in
the format yyyymmdd.

96 8 PKHUPTIM The most recent time the PKDS header was updated, in
the format hhmmssth.

104 4 PKHRLEN Length of the PKDS header entry.

108 16 PKHKMKHP The hash pattern of the KMMK.

124 16 PKHSMKHP The hash pattern of the SMK.

140 20 Reserved.

160 20 PKHAUTH PKDS header authentication code.

Format of the PKDS Record
Table 23. Public Key Data Set Record Format

Offset (Dec)
Number of
Bytes Field Name Description

0 64 PKDLABEL Label or name of this PKDS entry.

64 8 Reserved.

72 8 PKDCRDTE The date this PKDS record was created in the format
yyyymmdd.

80 8 PKDCRTIM The initial time this PKDS record was created in the format
hhmmssth.

88 8 PKDUPDTE The most recent date this PKDS record was updated, in the
format yyyymmdd.

96 8 PKDUPTIM The most recent time this PKDS record was updated, in the
format hhmmssth.

104 4 PKDRLEN Length of the entire PKDS record entry.

108 52 PKDUDATA User data.

160 20 PKDAUTH The entry authentication code.

180 1868 PKDTOKEN The public or private key token.

PKA Token Formats
As with DES key tokens, the first byte of a PKA key token indicates the type of
token. If the first byte of the key identifier is X'1E' or X'1F', this indicates that it is a
PKA key token.

Appendix A. Diagnosis Reference Information 143

A first byte of X'1E' indicates an external token with a cleartext public key and
optionally a private key that is either in cleartext or enciphered by a transport
key-encrypting key.

A first byte of X'1F' indicates an internal token with a cleartext public key and a
private key that is enciphered by the master key and ready for internal use.

Although DES tokens are 64 bytes, PKA tokens are of variable length because they
contain either RSA or DSS key values, which are variable in length. Consequently,
length parameters precede all PKA token parameters. The maximum allowed size is
2500 bytes. PKA key tokens consist of a token header, any required sections, and
optional sections, which depend on the token type.

A PKA key token can be a public or private key token, and a private key token can
be internal or external. Therefore, there are three basic types of tokens, each of
which can contain either RSA or DSS information:
v Public key tokens
v Private external key tokens
v Private internal key tokens

Public key tokens contain only the public key. Private key tokens contain the public
and private key pair.

This appendix presents formats for:
v An RSA public key token
v A DSS public key token
v An RSA private external key token
v A DSS private external key token
v An RSA private internal key token
v A DSS private internal key token

Format of the RSA Public Key Token
An RSA public key token contains the following sections:

v A required token header, starting with the token identifier X'1E'

v A required RSA public key section, starting with the section identifier X'04'

Table 24 presents the format of an RSA public key token. All length fields are in
binary. All binary fields (exponents, lengths, and so on) are stored with the
high-order byte first (left, low-address, S/390 format).

Table 24. RSA Public Key Token

Offset (Dec) Number of Bytes Description

Token Header (required)

000 001 Token identifier. X'1E' indicates an external token.

001 001 Version, X'00'.

002 002 Length of the key token structure.

004 004 Ignored. Should be zero.

RSA Public Key Section (required)

000 001 X'04', section identifier, RSA public key.

001 001 X'00', version.

002 002 Section length, 12+xxx+yyy.

004 002 Reserved field.

144 z/OS V1R3.0 ICSF System Programmer’s Guide

Table 24. RSA Public Key Token (continued)

Offset (Dec) Number of Bytes Description

006 002 RSA public key exponent field length in bytes, “xxx”.

008 002 Public key modulus length in bits.

010 002 RSA public key modulus field length in bytes, “yyy”.

012 xxx Public key exponent (this is generally a 1-, 3-, or 64- to 256-byte quantity), e.
e must be odd and 1<e<n. (Frequently, the value of e is 2.) 16+1

12+xxx yyy Modulus, n.

Format of the DSS Public Key Token
A DSS public key token contains the following sections:

v A required token header, starting with the token identifier X'1E'

v A required DSS public key section, starting with the section identifier X'03'

Table 25 presents the format of a DSS public key token. All length fields are in
binary. All binary fields (exponents, lengths, and so on) are stored with the
high-order byte first (left, low-address, S/390 format).

Table 25. DSS Public Key Token

Offset (Dec) Number of Bytes Description

Token Header (required)

000 001 Token identifier. X'1E' indicates an external token.

001 001 Version, X'00'.

002 002 Length of the key token structure.

004 004 Ignored. Should be zero.

DSS Public Key Section (required)

000 001 X'03', section identifier, DSS public key.

001 001 X'00', version.

002 002 Section length, 14+ppp+qqq+ggg+yyy.

004 002 Size of p in bits. The size of p must be one of: 512, 576, 640, 704, 768,
832, 896, 960, or 1024.

006 002 Size of the p field in bytes, “ppp”.

008 002 Size of the q field in bytes, “qqq”.

010 002 Size of the g field in bytes, “ggg”.

012 002 Size of the y field in bytes, “yyy”.

014 ppp Prime modulus (large public modulus), p.

014 +ppp qqq Prime divisor (small public modulus), q. 2159<q<2160.

014 +ppp +qqq ggg Public key generator, g.

014 +ppp +qqq
+ggg

yyy Public key, y. y=gx mod(p); 1<y<p.

Format of RSA Private External Key Tokens
An RSA private external key token contains the following sections:
v A required PKA token header starting with the token identifier X'1E'
v A required RSA private key section starting with one of the following section

identifiers:

Appendix A. Diagnosis Reference Information 145

– X'02' which indicates a modulus-exponent form RSA private key section (not
optimized) with modulus length of up to 1024 bits for use with the
Cryptographic Coprocessor Feature or the PCI Cryptographic Coprocessor.

– X'08' which indicates an optimized Chinese Remainder Theorem form private
key section with modulus bit length of up to 2048 bits for use with the PCI
Cryptographic Coprocessor

v A required RSA public key section, starting with the section identifier X'04'
v An optional private key name section, starting with the section identifier X'10'

Table 26 presents the basic record format of an RSA private external key token. All
length fields are in binary. All binary fields (exponents, lengths, and so on) are
stored with the high-order byte first (left, low-address, S/390 format). All binary fields
(exponents, modulus, and so on) in the private sections of tokens are right-justified
and padded with zeros to the left.

Table 26. RSA Private External Key Token Basic Record Format

Offset (Dec) Number of Bytes Description

Token Header (required)

000 001 Token identifier. X'1E' indicates an external token. The private key is either
in cleartext or enciphered with a transport key-encrypting key.

001 001 Version, X'00'.

002 002 Length of the key token structure.

004 004 Ignored. Should be zero.

RSA Private Key Section (required)

v For 1024-bit Modulus-Exponent form refer to “RSA Private Key Token, 1024-bit Modulus-Exponent External Form”
on page 147

v For 2048-bit Chinese Remainder Theorem form refer to “RSA Private Key Token, 2048-bit Chinese Remainder
Theorem External Form” on page 147

RSA Public Key Section (required)

000 001 X'04', section identifier, RSA public key.

001 001 X'00', version.

002 002 Section length, 12+xxx.

004 002 Reserved field.

006 002 RSA public key exponent field length in bytes, “xxx”.

008 002 Public key modulus length in bits.

010 002 RSA public key modulus field length in bytes, which is zero for a private
token.
Note: In an RSA private key token, this field should be zero. The RSA
private key section contains the modulus.

012 xxx Public key exponent, e (this is generally a 1-, 3-, or 64- to 256-byte
quantity). e must be odd and 1<e<n. (Frequently, the value of e is 216+1
(=65,537).

Private Key Name (optional)

000 001 X'10', section identifier, private key name.

001 001 X'00', version.

002 002 Section length, X'0044' (68 decimal).

004 064 Private key name (in ASCII), left-justified, padded with space characters
(X'20'). An access control system can use the private key name to verify
that the calling application is entitled to use the key.

146 z/OS V1R3.0 ICSF System Programmer’s Guide

RSA Private Key Token, 1024-bit Modulus-Exponent External Form: This RSA
private key token and the external X'02' token is supported on the Cryptographic
Coprocessor Feature and PCI Cryptographic Coprocessor.

Table 27. RSA Private Key Token, 1024-bit Modulus-Exponent External Format

Offset (Dec) Number of Bytes Description

000 001 X'02', section identifier, RSA private key, modulus-exponent format
(RSA-PRIV)

001 001 X'00', version.

002 002 Length of the RSA private key section X'016C' (364 decimal).

004 020 SHA-1 hash value of the private key subsection cleartext, offset 28 to the
section end. This hash value is checked after an enciphered private key is
deciphered for use.

024 004 Reserved; set to binary zero.

028 001 Key format and security:
X'00' Unencrypted RSA private key subsection identifier.
X'82' Encrypted RSA private key subsection identifier.

029 001 Reserved, binary zero.

030 020 SHA-1 hash of the optional key-name section. If there is no key-name
section, then 20 bytes of X'00'.

050 004 Key use flag bits.

Bit Meaning When Set On

0 Key management usage permitted.

1 Signature usage not permitted.

All other bits reserved, set to binary zero.

054 006 Reserved; set to binary zero.

060 024 Reserved; set to binary zero.

084 Start of the optionally-encrypted secure subsection.

084 024 Random number, confounder.

108 128 Private-key exponent, d. d=e-1 mod((p-1)(q-1)), and 1<d<n where e is the
public exponent.

End of the optionally-encrypted subsection; the confounder field and the private-key exponent field
are enciphered for key confidentiality when the key format and security flags (offset 28) indicate
that the private key is enciphered. They are enciphered under a double-length transport key using
the ede2 algorithm.

236 128 Modulus, n. n=pq where p and q are prime and 1<n<2 1024.

RSA Private Key Token, 2048-bit Chinese Remainder Theorem External
Form: This RSA private key token is supported on the PCI Cryptographic
Coprocessor.

Table 28. RSA Private Key Token, 2048-bit Chinese Remainder Theorem External Format

Offset (Dec) Number of Bytes Description

000 001 X'08', section identifier, RSA private key, CRT format (RSA-CRT)

001 001 X'00', version.

002 002 Length of the RSA private-key section, 132 + ppp + qqq + rrr + sss + uuu
+ xxx + nnn.

Appendix A. Diagnosis Reference Information 147

Table 28. RSA Private Key Token, 2048-bit Chinese Remainder Theorem External Format (continued)

Offset (Dec) Number of Bytes Description

004 020 SHA-1 hash value of the private key subsection cleartext, offset 28 to the
end of the modulus.

024 004 Reserved; set to binary zero.

028 001 Key format and security:
X'40' Unencrypted RSA private-key subsection identifier, Chinese

Remainder form.
X'42' Encrypted RSA private-key subsection identifier, Chinese

Remainder form.

029 001 Reserved; set to binary zero.

030 020 SHA-1 hash of the optional key-name section and any following optional
sections. If there are no optional sections, then 20 bytes of X'00'.

050 004 Key use flag bits.

Bit Meaning When Set On

0 Key management usage permitted.

1 Signature usage not permitted.

All other bits reserved, set to binary zero.

054 002 Length of prime number, p, in bytes: ppp.

056 002 Length of prime number, q, in bytes: qqq.

058 002 Length of dp, in bytes: rrr.

060 002 Length of dq, in bytes: sss.

062 002 Length of U, in bytes: uuu.

064 002 Length of modulus, n, in bytes: nnn.

066 004 Reserved; set to binary zero.

070 002 Length of padding field, in bytes: xxx.

072 004 Reserved, set to binary zero.

076 016 Reserved, set to binary zero.

092 032 Reserved; set to binary zero.

124 Start of the optionally-encrypted secure subsection.

124 008 Random number, confounder.

132 ppp Prime number, p.

132 + ppp qqq Prime number, q

132 + ppp + qqq rrr dp = d mod(p - 1)

132 + ppp + qqq
+ rrr

sss dq = d mod(q - 1)

132 + ppp + qqq
+ rrr + sss

uuu U = q –1mod(p).

132 + ppp + qqq
+ rrr + sss + uuu

xxx X'00' padding of length xxx bytes such that the length from the start of the
random number above to the end of the padding field is a multiple of eight
bytes.

End of the optionally-encrypted secure subsection; all of the fields starting with the confounder
field and ending with the variable length pad field are enciphered for key confidentiality when the
key format-and-security flags (offset 28) indicate that the private key is enciphered. They are
enciphered under a double-length transport key using the TDES (CBC outer chaining) algorithm.

148 z/OS V1R3.0 ICSF System Programmer’s Guide

Table 28. RSA Private Key Token, 2048-bit Chinese Remainder Theorem External Format (continued)

Offset (Dec) Number of Bytes Description

132 + ppp + qqq
+ rrr + sss + uuu
+ xxx

nnn Modulus, n. n = pq where p and q are prime and 2512<n<22048.

Format of the DSS Private External Key Token
A DSS private external key token contains the following sections:
v A required PKA token header, starting with the token identifier X'1E'
v A required DSS private key section, starting with the section identifier X'01'
v A required DSS public key section, starting with the section identifier X'03'
v An optional private key name section, starting with the section identifier X'10'

Table 29 presents the format of a DSS private external key token. All length fields
are in binary. All binary fields (exponents, lengths, and so on) are stored with the
high-order byte first (left, low-address, S/390 format). All binary fields (exponents,
modulus, and so on) in the private sections of tokens are right-justified and padded
with zeros to the left.

Table 29. DSS Private External Key Token

Offset (Dec) Number of Bytes Description

Token Header (required)

000 001 Token identifier. X'1E' indicates an external token. The private key is
enciphered with a PKA master key.

001 001 Version, X'00'.

002 002 Length of the key token structure.

004 004 Ignored. Should be zero.

DSS Private Key Section and Secured Subsection (required)

000 001 X'01', section identifier, DSS private key.

001 001 X'00', version.

002 002 Length of the DSS private key section, 436, X'01B4'.

004 020 SHA-1 hash value of the private key subsection cleartext, offset 28 to the
section end. This hash value is checked after an enciphered private key is
deciphered for use.

024 004 Reserved; set to binary zero.

028 001 Key security:
X'00' Unencrypted DSS private key subsection identifier.
X'81' Encrypted DSS private key subsection identifier.

029 001 Padding, X'00'.

030 020 SHA-1 hash of the key token structure contents that follow the public key
section. If no sections follow, this field is set to binary zeros.

050 010 Reserved; set to binary zero.

060 048 Ignored; set to binary zero.

108 128 Public key generator, g. 1<g<p.

236 128 Prime modulus (large public modulus), p. 2L-1<p<2L and L (the modulus
length) must be a multiple of 64.

364 020 Prime divisor (small public modulus), q. 2159<q<2160.

384 004 Reserved; set to binary zero.

Appendix A. Diagnosis Reference Information 149

Table 29. DSS Private External Key Token (continued)

Offset (Dec) Number of Bytes Description

388 024 Random number, confounder.
Note: This field and the next two fields are enciphered for key
confidentiality when the key security flag (offset 28) indicates the private
key is enciphered.

412 020 Secret DSS key, x; x is random. (See the preceding note.)

432 004 Random number, generated when the secret key is generated. (See the
preceding note.)

DSS Public Key Section (required)

000 001 X'03', section identifier, DSS public key.

001 001 X'00', version.

002 002 Section length, 14+yyy.

004 002 Size of p in bits. The size of p must be one of: 512, 576, 640, 704, 768,
832, 896, 960, or 1024.

006 002 Size of the p field in bytes, which is zero for a private token.

008 002 Size of the q field in bytes, which is zero for a private token.

010 002 Size of the g field in bytes, which is zero for a private token.

012 002 Size of the y field in bytes, “yyy”.

014 yyy Public key, y. y=gx mod(p)
Note: p, q, and y are defined in the DSS public key token.

Private Key Name (optional)

000 001 X'10', section identifier, private key. name

001 001 X'00', version.

002 002 Section length, X'0044' (68 decimal).

004 064 Private key name (in ASCII), left-justified, padded with space characters
(X'20'). An access control system can use the private key name to verify
that the calling application is entitled to use the key.

Internal PKA Tokens

Programming Interface information

PKA private internal key tokens contain both private and public key information.
There is no need for an internal token with only the public key information because
the public values are in the clear.

The first byte of X'1F' indicates an internal token with a cleartext public key and a
private key that is enciphered with a PKA master key and ready for local (internal)
use.

The format of a PKA private internal key token is similar to that of a private external
token. The only differences are changes in the private key section and the addition
of some internal information at the end of the token. This last section starts with the
eyecatcher 'PKTN' rather than with a token or section marker.

Format of the RSA Private Internal Key Token
An RSA private internal key token contains the following sections:
v A required PKA token header, starting with the token identifier X'1F'

150 z/OS V1R3.0 ICSF System Programmer’s Guide

v basic record format of an RSA private internal key token. All length fields are in
binary. All binary fields (exponents, lengths, and so on) are stored with the
high-order byte first (left, low-address, S/390 format). All binary fields (exponents,
modulus, and so on) in the private sections of tokens are right-justified and
padded with zeros to the left.

Table 30. RSA Private Internal Key Token Basic Record Format

Offset (Dec) Number of Bytes Description

Token Header (required)

000 001 Token identifier. X'1F' indicates an internal token. The private key is
enciphered with a PKA master key.

001 001 Version, X'00'.

002 002 Length of the key token structure excluding the internal information
section.

004 004 Ignored; should be zero.

RSA Private Key Section and Secured Subsection (required)

v For 1024-bit X'02' Modulus-Exponent form refer to “RSA Private Key Token, 1024-bit Modulus-Exponent Internal
Form for Cryptographic Coprocessor Feature” on page 152

v For 1024-bit X'06' Modulus-Exponent form refer to “RSA Private Key Token, 1024-bit Modulus-Exponent Internal
Form for PCI Cryptographic Coprocessor” on page 153

v For 2048-bit X'08' Chinese Remainder Theorem form refer to “RSA Private Key Token, 2048-bit Chinese
Remainder Theorem Internal Form” on page 154

RSA Public Key Section (required)

000 001 X'04', section identifier, RSA public key.

001 001 X'00', version.

002 002 Section length, 12+xxx.

004 002 Reserved field.

006 002 RSA public key exponent field length in bytes, “xxx”.

008 002 Public key modulus length in bits.

010 002 RSA public key modulus field length in bytes, which is zero for a private
token.

012 xxx Public key exponent (this is generally a 1, 3, or 64 to 256-byte quantity),
e. e must be odd and 1<e<n. (Frequently, the value of e is 216+1
(=65,537).

Private Key Name (optional)

000 001 X'10', section identifier, private key name.

001 001 X'00', version.

002 002 Section length, X'0044' (68 decimal).

004 064 Private key name (in ASCII), left-justified, padded with space characters
(X'20'). An access control system can use the private key name to verify
that the calling application is entitled to use the key.

Internal Information Section (required)

000 004 Eye catcher 'PKTN'.

Appendix A. Diagnosis Reference Information 151

Table 30. RSA Private Internal Key Token Basic Record Format (continued)

Offset (Dec) Number of Bytes Description

004 004 PKA token type.

Bit Meaning When Set On

0 RSA key.

1 DSS key.

2 Private key.

3 Public key.

4 Private key name section exists.

5 Private key unenciphered.

6 Blinding information present.

7 Retained private key.

008 004 Address of token header.

012 002 Total length of total structure including this information section.

014 002 Count of number of sections.

016 016 PKA master key hash pattern.

032 001 Domain of retained key.

033 008 Serial number of processor holding retained key.

041 007 Reserved.

RSA Private Key Token, 1024-bit Modulus-Exponent Internal Form for
Cryptographic Coprocessor Feature:

Table 31. RSA Private Internal Key Token, 1024-bit ME Form for Cryptographic Coprocessor Feature

Offset (Dec) Number of Bytes Description

000 001 X'02', section identifier, RSA private key.

001 001 X'00', version.

002 002 Length of the RSA private key section X'016C' (364 decimal).

004 020 SHA-1 hash value of the private key subsection cleartext, offset 28 to the
section end. This hash value is checked after an enciphered private key
is deciphered for use.

024 004 Reserved; set to binary zero.

028 001 Key format and security:
X'02' RSA private key.

029 001 Format of external key from which this token was derived:
X'21' External private key was specified in the clear.
X'22' External private key was encrypted.

030 020 SHA-1 hash of the key token structure contents that follow the public key
section. If no sections follow, this field is set to binary zeros.

050 001 Key use flag bits.

Bit Meaning When Set On

0 Key management usage permitted.

1 Signature usage not permitted.

All other bits reserved, set to binary zero.

152 z/OS V1R3.0 ICSF System Programmer’s Guide

Table 31. RSA Private Internal Key Token, 1024-bit ME Form for Cryptographic Coprocessor Feature (continued)

Offset (Dec) Number of Bytes Description

051 009 Reserved; set to binary zero.

060 048 Object Protection Key (OPK) encrypted under a PKA master key—can be
under the Signature Master Key (SMK) or Key Management Master Key
(KMMK) depending on key use.

108 128 Secret key exponent d, encrypted under the OPK. d=e-1 mod((p-1)(q-1))

236 128 Modulus, n. n=pq where p and q are prime and 1<n<2 1024.

RSA Private Key Token, 1024-bit Modulus-Exponent Internal Form for PCI
Cryptographic Coprocessor:

Table 32. RSA Private Internal Key Token, 1024-bit ME Form for PCI Cryptographic Coprocessor

Offset (Dec) Number of Bytes Description

000 001 X'06', section identifier, RSA private key modulus-exponent format
(RSA-PRIV).

001 001 X'00', version.

002 002 Length of the RSA private key section X'0198' (408 decimal) + rrr + iii +
xxx.

004 020 SHA-1 hash value of the private key subsection cleartext, offset 28 to
and including the modulus at offset 236.

024 004 Reserved; set to binary zero.

028 001 Key format and security:
X'02' RSA private key.

029 001 Format of external key from which this token was derived:
X'21' External private key was specified in the clear.
X'22' External private key was encrypted.
X'23' Private key was generated using regeneration data.
X'24' Private key was randomly generated.

030 020 SHA-1 hash of the optional key-name section and any following optional
sections. If there are no optional sections, this field is set to binary zeros.

050 004 Key use flag bits.

Bit Meaning When Set On

0 Key management usage permitted.

1 Signature usage not permitted.

All other bits reserved, set to binary zeros.

054 006 Reserved; set to binary zero.

060 048 Object Protection Key (OPK) encrypted under the Asymmetric Keys
Master Key using the ede3 algorithm.

108 128 Private key exponent d, encrypted under the OPK using the ede5
algorithm. d=e-1mod((p-1)(q-1)), and 1<d<n where e is the public
exponent.

236 128 Modulus, n. n=pq where p and q are prime and 2512<n<2 1024.

364 016 Asymmetric-Keys Master Key hash pattern.

380 020 SHA-1 hash value of the blinding information subsection cleartext, offset
400 to the end of the section.

400 002 Length of the random number r, in bytes: rrr.

Appendix A. Diagnosis Reference Information 153

Table 32. RSA Private Internal Key Token, 1024-bit ME Form for PCI Cryptographic Coprocessor (continued)

Offset (Dec) Number of Bytes Description

402 002 Length of the random number r–1, in bytes: iii.

404 002 Length of the padding field, in bytes: xxx.

406 002 Reserved; set to binary zeros.

408 Start of the encrypted blinding subsection

408 rrr Random number r (used in blinding).

408 + rrr iii Random number r–1 (used in blinding).

408 + rrr + iii xxx X'00' padding of length xxx bytes such that the length from the start of
the encrypted blinding subsection to the end of the padding field is a
multiple of eight bytes.

End of the encrypted blinding subsection; all of the fields starting with the random number r and
ending with the variable length pad field are encrypted under the OPK using TDES (CBC outer
chaining) algorithm.

RSA Private Key Token, 2048-bit Chinese Remainder Theorem Internal Form:
This RSA private key token is supported on the PCI Cryptographic Coprocessor.

Table 33. RSA Private Internal Key Token, 2048-bit Chinese Remainder Theorem External Format

Offset (Dec) Number of Bytes Description

000 001 X'08', section identifier, RSA private key, CRT format (RSA-CRT)

001 001 X'00', version.

002 002 Length of the RSA private-key section, 132 + ppp + qqq + rrr + sss + uuu
+ +ttt + iii + xxx + nnn.

004 020 SHA-1 hash value of the private-key subsection cleartext, offset 28 to the
end of the modulus.

024 004 Reserved; set to binary zero.

028 001 Key format and security:
X'08' Encrypted RSA private-key subsection identifier, Chinese

Remainder form.

029 001 Key derivation method:
X'21' External private key was specified in the clear.
X'22' External private key was encrypted.
X'23' Private key was generated using regeneration data.
X'24' Private key was randomly generated.

030 020 SHA-1 hash of the optional key-name section and any following sections.
If there are no optional sections, then 20 bytes of X'00'.

050 004 Key use flag bits:

Bit Meaning When Set On

0 Key management usage permitted.

1 Signature usage not permitted.

All other bits reserved, set to binary zero.

054 002 Length of prime number, p, in bytes: ppp.

056 002 Length of prime number, q, in bytes: qqq.

058 002 Length of dp, in bytes: rrr.

060 002 Length of dq, in bytes: sss.

154 z/OS V1R3.0 ICSF System Programmer’s Guide

Table 33. RSA Private Internal Key Token, 2048-bit Chinese Remainder Theorem External Format (continued)

Offset (Dec) Number of Bytes Description

062 002 Length of U, in bytes: uuu.

064 002 Length of modulus, n, in bytes: nnn.

066 002 Length of the random number r, in bytes: ttt.

068 002 Length of the random number r–1, in bytes: iii.

070 002 Length of padding field, in bytes: xxx.

072 004 Reserved, set to binary zero.

076 016 Asymmetric-Keys Master Key hash pattern.

092 032 Object Protection Key (OPK) encrypted under the Asymmetric-Keys
Master Key using the TDES (CBC outer chaining) algorithm.

124 Start of the encrypted secure subsection, encrypted under the OPK using TDES (CBC outer
chaining).

124 008 Random number, confounder.

132 ppp Prime number, p.

132 + ppp qqq Prime number, q

132 + ppp + qqq rrr dp = d mod(p - 1)

132 + ppp + qqq
+ rrr

sss dq = d mod(q - 1)

132 + ppp + qqq
+ rrr + sss

uuu U = q–1mod(p).

132 + ppp + qqq
+ rrr + sss + uuu

ttt Random number r (used in blinding).

132 + ppp + qqq
+ rrr + sss + uuu
+ ttt

iii Random number r–1 (used in blinding).

132 + ppp + qqq
+ rrr + sss + uuu
+ ttt + iii

xxx X'00' padding of length xxx bytes such that the length from the start of the
confounder at offset 124 to the end of the padding field is a multiple of
eight bytes.

End of the encrypted secure subsection; all of the fields starting with the confounder field and
ending with the variable length pad field are encrypted under the OPK using TDES (CBC outer
chaining) for key confidentiality.

132 + ppp + qqq
+ rrr + sss + uuu
+ ttt + iii + xxx

nnn Modulus, n. n = pq where p and q are prime and 2512<n<22048.

Format of the DSS Private Internal Key Token
A DSS private internal key token contains the following sections:
v A required PKA token header, starting with the token identifier X'1F'
v A required DSS private key section, starting with the section identifier X'01'
v A required DSS public key section, starting with the section identifier X'03'
v An optional private key name section, starting with the section identifier X'10'
v A required internal information section, starting with the eyecatcher 'PKTN'

Table 34 on page 156 presents the format of a DSS private internal token. All length
fields are in binary. All binary fields (exponents, lengths, and so on) are stored with
the high-order byte first (left, low-address, S/390 format). All binary fields
(exponents, modulus, and so on) in the private sections of tokens are right-justified
and padded with zeros to the left.

Appendix A. Diagnosis Reference Information 155

Table 34. DSS Private Internal Key Token

Offset (Dec) Number of Bytes Description

Token Header (required)

000 001 Token identifier. X'1F' indicates an internal token. The private key is
enciphered with a PKA master key.

001 001 Version, X'00'.

002 002 Length of the key token structure excluding the internal information
section.

004 004 Ignored; should be zero.

DSS Private Key Section and Secured Subsection (required)

000 001 X'01', section identifier, DSS private key.

001 001 X'00', version.

002 002 Length of the DSS private key section, 436, X'01B4'.

004 020 SHA-1 hash value of the private key subsection cleartext, offset 28 to the
section end. This hash value is checked after an enciphered private key is
deciphered for use.

024 004 Reserved; set to binary zero.

028 001 Key security: X'01' DSS private key.

029 001 Format of external key token:
X'10' Private key generated on an ICSF host.
X'11' External private key was specified in the clear.
X'12' External private key was encrypted.

030 020 SHA-1 hash of the key token structure contents that follow the public key
section. If no sections follow, this field is set to binary zeros.

050 010 Reserved; set to binary zero.

060 048 The OPK encrypted under a PKA master key (Signature Master Key
(SMK)).

108 128 Public key generator, g. 1<g<p.

236 128 Prime modulus (large public modulus), p. 2L-1<p<2L for 512≤L≤1024, and
L (the modulus length) must be a multiple of 64.

364 020 Prime divisor (small public modulus), q. 2159<q<2160.

384 004 Reserved; set to binary zero.

388 024 Random number, confounder.
Note: This field and the two that follow are enciphered under the OPK.

412 020 Secret DSS key, x. x is random. (See the preceding note.)

432 004 Random number, generated when the secret key is generated. (See the
preceding note.)

DSS Public Key Section (required)

000 001 X'03', section identifier, DSS public key.

001 001 X'00', version.

002 002 Section length, 14+yyy.

004 002 Size of p in bits. The size of p must be one of: 512, 576, 640, 704, 768,
832, 896, 960, or 1024.

006 002 Size of the p field in bytes, which is zero for a private token.

008 002 Size of the q field in bytes, which is zero for a private token.

010 002 Size of the g field in bytes, which is zero for a private token.

156 z/OS V1R3.0 ICSF System Programmer’s Guide

Table 34. DSS Private Internal Key Token (continued)

Offset (Dec) Number of Bytes Description

012 002 Size of the y field in bytes, “yyy”.

014 yyy Public key, y. y=gx mod(p);
Note: p, g, and y are defined in the DSS public key token.

Private Key Name (optional)

000 001 X'10', section identifier, private key name.

001 001 X'00', version.

002 002 Section length, X'0044' (68 decimal).

004 064 Private key name (in ASCII), left-justified, padded with space characters
(X'20'). An access control system can use the private key name to verify
that the calling application is entitled to use the key.

Internal Information Section (required)

000 004 Eye catcher 'PKTN'.

004 004 PKA token type.

Bit Meaning When Set On

0 RSA key.

1 DSS key.

2 Private key.

3 Public key.

4 Private key name section exists.

008 004 Address of token header.

012 002 Length of internal work area.

014 002 Count of number of sections.

016 016 PKA master key hash pattern.

032 016 Reserved.

End of Programming Interface information

Data Areas
The following sections present the format of the Cryptographic Communication
Vector Table (CCVT) and the Cryptographic Communication Vector Table Extension
(CCVE) data areas.

The Cryptographic Communication Vector Table (CCVT)
The CCVT is the ICSF base control block and contains addresses of common
areas for use by ICSF components. Indicators in the CCVT also provide ICSF
status information. The CCVT is getmained in subpool 245 below the line.

Note: The CCVT is not freemained when you stop ICSF.

Programming Interface information

CCVT

ONLY the following fields are part of the programming interface:

Appendix A. Diagnosis Reference Information 157

v CCVTDACC
v CCVTCCVE
v CCVTPRPC
v CCVTINST
v CCVTINS2
v CCVTLNTH
v CCVT_FMID
v CCVT_USERPARM

End of Programming Interface information

Table 35 describes the contents of the Cryptographic Communication Vector Table.

Table 35. Cryptographic Communication Vector Table

Offset (Dec)
Number of
Bytes Field Name Description

0 4 CCVTID EBCDIC Cryptographic Communication Vector Table ID.
This field must contain the character string CCVT.

4 2 CCVTVER Version.

The version of the CCVT. This field must contain the
character string 02.

6 2 CCVTLEN Length.

The length of the CCVT. The value of this field is 160 in
decimal.

8 1 CCVTAUX Auxilliary flags.

Bit Meaning When Set On

0 ICSF is terminating.

9 5 Reserved.

14 2 CCVTRLVL ICSF level.

16 4 CCVTCCVE Cryptographic Communication Vector Table Extension
(CCVE) address.

The address of a private area extension of the CCVT.
You should place any fields not needed by other
address spaces in the CCVE.

20 4 CCVTPC1 PC number for entry into module CSFANSPC.

24 4 CCVTPC2 PC number for entry into module CSFASSPC.

28 4 CCVTPRPC Entry point for the pre-PC processing module,
CSFARPC.

32 4 CCVTINST For installation use.

158 z/OS V1R3.0 ICSF System Programmer’s Guide

|

Table 35. Cryptographic Communication Vector Table (continued)

Offset (Dec)
Number of
Bytes Field Name Description

36 1 CCVTSFG1 Status byte.

Bit Meaning When Set On

0 ICSF services are active.

1 At least one Integrated Cryptographic
Feature has a valid master key.

2 ICSF initialization complete.

3 ICSF is active and CUSP/PCF is not
active.

4 Compatibility is permitted.
COMPAT(YES) or
COMPAT(COEXIST) is specified.

5 At least one Integrated Cryptographic
Feature is valid.

6 SEC 250 or above.

7 S/390 Enterprise Servers and S/390
Multiprise Cryptographic Coprocessor
Feature is in use.

37 1 CCVTFLAG Flag byte.

Bit Meaning When Set On

0 VTAM puts terminal buffer above
16MB line.

1 Hardware environment tested.

2 GTMAC opcode in hardware.

3 PCI Cryptographic Coprocessor
hardware instructions available.

4 At least one PCI Cryptographic
Coprocessor is active.

5 Additional hardware environment
tested.

6 At least one PCI Cryptographic
Coprocessor is online.

7 At least one PCI Cryptographic
Coprocessor is present.

Appendix A. Diagnosis Reference Information 159

|
|

|
|

|
|

|
|

Table 35. Cryptographic Communication Vector Table (continued)

Offset (Dec)
Number of
Bytes Field Name Description

38 1 CCVTOFLG Operational flag byte.

Bit Meaning When Set On

0 Configuration is under PR/SM.

1 Close the CKDS

2 Key record create, key record delete,
and key record write disallowed.

3 I/O subtask is available.

4 CCVT_DEF_ALG bit. If on, CDMF is
the system default algorithm; if off,
DES is the default.

5 CCVT_CDMF_ENA bit. If on,
hardware is capable of performing
CDMF.

6 PKA master keys are valid.

7 Use ICSF reason codes.

39 1 CCVTSVCM SVC number for key management. This is the
CUSP/PCF compatibility SVC.

40 1 CCVTCDX Old CDX, constant this IPL.

41 1 CCVTSVCS SVC number for DES interface SVC. This is the
CUSP/PCF compatibility SVC.

42 2 CCVTASID ASID of ICSF address space.

44 4 CCVTIDNR Subtask caller ID.

48 4 CCVTPC3 Entry point to CSFASSPA used by compatibility SVCs.

52 4 CCVTSRUT Address of the access method module.

56 8 CCVTINS2 An 8-byte area for installation use.

64 4 CCVTMDS Data space server PC. PC number for entry to data
space server that adds and deletes the in-storage
CKDS.

68 4 CCVTLNTH Maximum installation data length.

72 4 CCVTASCB ICSF ASCB address.

76 4 CCVTWLST Address of CICS Wait List.

80 4 Reserved.

84 4 CCVTENF ECB for ENF listen.

88 4 CCVTTCB ICSF maintask TCB address.

92 4 CCVTTRC ECB for component trace.

96 4 CCVTECBA Address of CAMQ ECB array.

100 4 CCVTENF1 Token for ENF listen exit.

104 4 CCVTENF2 Token for ENF listen exit.

108 4 CCVTLX LX of ICSF address space.

160 z/OS V1R3.0 ICSF System Programmer’s Guide

Table 35. Cryptographic Communication Vector Table (continued)

Offset (Dec)
Number of
Bytes Field Name Description

112 8 CCVTDS Bytes 0–3:

Address of the beginning of the current data space.

Bytes 4–7:

ALET (Access list entry token) of the current data
space.

120 4 CCVTLFDE ECB to post to start the task to search for disabled
Integrated Cryptographic Features.

124 4 CCVTIOSE ECB to post to use I/O subtask.

128 4 CCVTIOSC ECB posted by I/O subtask.

132 4 CCVTIOAS ASCB address for non-CSF address space.

136 8 CCVTFMID ICSF FMID.

144 8 CCVT_USERPARM ICSF user parameter.

152 1 CCVTPKAF PKA register clear key entry processing flags.

Bit Meaning When Set On

0 KMMK is valid for CP0.

1 SMK is valid for CP0.

2 KMMK has been reset for CP0.

3 SMK has been reset for CP0.

4 KMMK is valid for CP1.

5 SMK is valid for CP1.

6 KMMK has been reset for CP1.

7 SMK has been reset for CP1.

153 1 CCVTPKAR
Bit Meaning When Set On

0 and 1 SMK status for KSU0.

2 and 3 KMMK status for KSU0.

4 and 5 SMK status for KSU1.

6 and 7 KMMK status for KSU1.

154 1 CCVTPKAX PKA register status (reserved).

155 1 CCVTKAZ PKA register status (reserved).

156 16 CCVTCCC Cryptographic configuration control (CCC).

172 4 CCVTSPKB Address of public key build.

176 4 CCVTSPKX Address of public key extract.

180 4 CCVTPIOE ECB for PKDS I/O subtask.

184 4 CCVTPIOC ECB for PKDS I/O work complete.

188 4 CCVTPIOA Address of ASCB task posting the PKDS I/O subtask.

192 4 CCVTIDNR_PKDS I/O subtask caller identification.

Appendix A. Diagnosis Reference Information 161

Table 35. Cryptographic Communication Vector Table (continued)

Offset (Dec)
Number of
Bytes Field Name Description

196 1 CCVTPKDF PKDS processing flags.

Bit Meaning When Set On

0 PKDS available.

1 Signal PKDS to I/O close PKDS.

2 At least one PCICA is active.

3-7 Reserved.

197 1 CCVTCICS CICS processing flags.

Bit Meaning When Set On

0 CSFAPRPD installed.

1 CSFACKWL installed.

198 1 CCVTYAFF
Bit Meaning When Set On

0 ZKA compliance environment.

199 1 * Reserved.

200 4 CCVTPRPD Address of CSFAPRPD.

204 4 CCVTCKWL Address of CSFACKWL.

208 4 CCVTPC4 PC4 (CSFMCAMP) number.

212 4 * Reserved.

216 4 CCVTENF3 ENF token for PCI Cryptographic Coprocessor online
event.

220 4 CCVTENFP ECB for PCI Cryptographic Coprocessor online event.

224 4 CCVTENA1 Address of ENF1 listen exit.

228 4 CCVTENA2 Address of ENF1 listen exit.

232 4 CCVTENA3 Address of ENF1 listen exit.

236 4 CCVTPC5 PC5 (CSFMCCPP entry).

240 4 CCVTPC6 PC6 (CSFMWCFS entry).

244 16 * Reserved.

260 4 CCVTGSVT Address of generic service vector.

264 4 CCVTGSFL Flags.

268 4 CCVTCSVG Address of CSFSCVG.

272 4 CCVTACVG Address of CSFACVG.

276 4 CCVTDACC ICSF DAC instructions control block for RMF.

280 16 * Reserved.

296 * Ensure CCVT ends on doubleword boundary.

The Cryptographic Communication Vector Table Extension (CCVE)
The CCVE is an extension of the CCVT that contains fields that can exist. The
CCVE exists in ICSF extended private. It should contain any ICSF base control

162 z/OS V1R3.0 ICSF System Programmer’s Guide

||||

||||

||||

block fields that are not needed by other address spaces.

Programming Interface information

CCVE

ONLY the following fields are part of the programming interface:
v CCVEINPP
v CCVEINPL
v CCVESECC

End of Programming Interface information

Table 36 describes the contents of the Cryptographic Communication Vector Table
Extension.

Table 36. Cryptographic Communication Vector Table Extension

Offset (Dec)
Number of
Bytes Field Name Description

0 4 CCVEID Cryptographic Communication Vector Table Extension
ID. This field must contain the character string CCVE.

4 2 CCVEVER Version.

The version number of the CCVE. This field must
contain the character string 02.

6 2 CCVELEN Length.

The length of the CCVE. The value of this field is 368 in
decimal.

8 8 Reserved.

Appendix A. Diagnosis Reference Information 163

Table 36. Cryptographic Communication Vector Table Extension (continued)

Offset (Dec)
Number of
Bytes Field Name Description

16 4 CCVESTAT Status word

First status byte – CCVESTA1

Bit Meaning When Set On

0 Special secure mode allowed.

1 Special secure mode enabled.

2 ICSF is in test mode.

3 Authentication required for key
retrieval.

4 The hardware has gone from active to
inactive.

5 First start of ICSF during this IPL.

6 Security Server (RACF) checking
required for authorized callers.

7 CUSP/PCF coexistence.

Second status byte – CCVESTA2

Bit Meaning When Set On

0 Dynamic CKDS updates disallowed.

1 Refresh needed.

2 Dynamic CKDS creates disallowed.

3 Linear CKDS 80% full.

4 80% message already sent.

5 CDMF used (rather than DES). This
indicates setting of COMPENC
keyword.

6 PKA callable services disallowed.

7 Reserved.

Third status byte – CCVESTA3

Bit Meaning When Set On

0 PKDS read not permitted.

1 PKDS write, create, and delete not
permitted.

2-7 Reserved.

Remaining 1 byte is reserved.

20 4 CCVECAMQ Pointer to MCAMQ.

24 4 CCVEEXIT Pointer to the installation exit router (CSFEXIT).

28 4 CCVESMIB Address of the storage manager’s storage pool. The
offset of this field cannot be changed without changing
the CSFAGET and CSFAFREE macros.

32 4 CCVETRCE Address of the create trace entry routine.

164 z/OS V1R3.0 ICSF System Programmer’s Guide

Table 36. Cryptographic Communication Vector Table Extension (continued)

Offset (Dec)
Number of
Bytes Field Name Description

36 4 CCVETRCB Pointer to the current trace buffer.

Bit Meaning When Set On

0 Trace is active.

40 4 CCVECPRM Address of CPRM.

44 4 CCVEMGST Address of the generic service table. See “Generic
Service Table (CSFMGST)” on page 167 for a
description of the generic service table.

48 4 CCVEMQUE Address of the message queue.

52 4 CCVEENT Address of the exit name table.

56 4 CCVECC3 Address of the CSFACC3 routine.

60 4 CCVEWM01 Address of CSFWM001.

64 4 CCVEMP01 Address of CSFMP001.

68 4 CCVEMKVN Master key version numbers.

Byte 1: Current master key version number.

Bytes 2 and 3: Reserved.

Byte 4: Cryptographic domain index.

72 44 CCVECKDS Data set name of current CKDS.

116 4 Reserved.

120 4 Reserved.

124 4 CCVELFDD ECB for look for disabled Cryptographic Coprocessor
Feature task termination (LFD Done).

128 4 CCVELFDT Pointer to the TCB for CSFMLFDT.

132 4 CCVECWMB Address of the common write message block.

136 4 CCVECC3M Sixth entry to ACC3.

140 4 CCVEFIXS Address of the fixed area storage used as dynamic
storage for the RISGNL routines.

144 4 CCVEFIXL Length of the fixed area storage.

148 4 CCVECPUF CPUF routine — used to manipulate the control register.

152 4 CCVERFMK RFOMK routine — used to RFOMK keys on specific
CPs.

156 4 CCVERMKV MKV RISGNL routine — used by MKV to validate a CP.

160 4 CCVESTHW STHW routine — used to obtain the current status of
the hardware.

164 4 CCVEKEYM KEYM routine — used to manipulate keys from the key
entry hardware.

168 4 CCVEDKEF DKEF routine — used to manipulate keys for clear key
entry.

172 4 Reserved.

176 4 Reserved.

180 4 Reserved.

184 4 CCVECKDL Pointer to the CKDS lookup routine.

Appendix A. Diagnosis Reference Information 165

Table 36. Cryptographic Communication Vector Table Extension (continued)

Offset (Dec)
Number of
Bytes Field Name Description

188 4 CCVECC3A Pointer to CSFACC3A routine.

192 4 CCVECC3B Pointer to CSFACC3B routine.

196 4 CCVECC3C Fourth entry to ACC3.

200 4 CCVECC3L Fifth entry to ACC3.

204 4 CCVERFRR Pointer to the FRR routine to protect RISGNL routines.

208 4 CCVEMKV Address of the master key validate routine.

212 4 CCVEENFS ECB for Issue ENF SIGNAL.

216 4 CCVETWIN Address of CSFATWIN

220 4 CCVETWOT Address of CSFATWOT

224 4 CCVEVKID Pointer to CSFAVKID

228 4 CCVEMKVB Pointer to the current Master Key Verification Pattern
(MKVP) block. See “Master Key Verification Pattern
Block (MKVB)” on page 167 for a description of the
MKVP block.

232 32 CCVEMKB1 First MKVP block.

264 32 CCVEMKB2 Second MKVP block.

296 32 CCVEMKB3 Third MKVP block.

328 4 CCVEINPP Pointer to installation optional parameter.

332 4 CCVEINPL Length of the installation optional parameter.

336 4 CCVETRCN Number of trace entries.

340 4 CCVESMIL SMIB for large blocks.

344 4 CCVEPMKV Address of CSFMPMKV.

348 20 Reserved.

368 4 CCVETMST CPOOL ID for ASSPC.

372 8 CCVESECC Reserved for security exit.

380 4 CCVEENTK ENTE for security keys exit.

384 4 CCVEENTS ENTE for security service exit.

388 4 CCVEIOST Address of I/O subtask TCB.

392 4 CCVEIOPB Address of I/O subtask data.

396 16 CCVE_PKA_KMMK_HP KMMK hash pattern.

412 16 CCVE_PKA_SMK_HP SMK hash pattern.

428 4 CCVEIOST_PKDS Address of PKDS I/O subtask.

432 4 CCVEIOPB_PKDS Address of PKDS I/O st data.

436 4 CCVEPKDL Pointer to PKDS interface.

440 44 CCVEPKDS Data set name of the PKDS.

484 4 CCVECCPD Address of CAJ data.

488 4 CCVECCPV Address of private CAJ data.

492 4 CCVEGSVT Address of generic service vector table.

496 4 CCVEGSFL GSVT flags.

500 54 CCVEWLDS Data set name of Wait List data set.

166 z/OS V1R3.0 ICSF System Programmer’s Guide

Table 36. Cryptographic Communication Vector Table Extension (continued)

Offset (Dec)
Number of
Bytes Field Name Description

554 2 * Padding.

556 4 CCVEMUST Address of UDX service table.

560 4 CCVEQSCC Queue State Change Count.

564 4 CCVEPKCH Size of PKDS cache in records.

568 24 * Reserved.

592 4 * Reserved for alignment.

594 4 Ensure CCVE ends on a doubleword boundary.

Master Key Verification Pattern Block (MKVB)
Table 37 describes the contents of the MKVB.

Table 37. Master Key Verification Pattern Block Format

Offset (Dec)
Number of
Bytes Description

0 4 Pointer to the next element or zero.

4 4 Pointer to the next element — this field for use by CSFMMKV.

8 4 Reserved.

12 1 Master key version number for this verification pattern.

13 1 Flag.

Bit Meaning When Set On

0 This element is on the active queue.

14 2 Reserved.

16 8 Master Key Verification Pattern.

24 8 Master Key Authentication Pattern.

Generic Service Table (CSFMGST)
Table 38 describes the format of the generic service table, a control block that is
used to control the call of installation-defined services.

Table 38. Generic Service Table Block Format

Offset (Dec)
Number of
Bytes Description

0 4 EBCIDIC ID.

4 2 Version number.

6 2 Length of the MGST.

8 4 Number of entries in the array.

12 4 Subpool this table is in.

16 4 Reserved.

20 4 Reserved.

24 4 Reserved.

28 4 Reserved.

Variable Section of the MGST

Appendix A. Diagnosis Reference Information 167

Table 38. Generic Service Table Block Format (continued)

Offset (Dec)
Number of
Bytes Description

32 8 IBM-assigned name.

40 8 Installation-assigned name.

48 4 Flags.

Bit Meaning When Set On

0 Service has been requested by the installation.

1 Service has been loaded.

2 Service is active.

3 Service is required.

52 4 Address of the service.

56 4 Installation-assigned service number.

60 4 Reserved.

RMF Measurements Table
Table 39 describes the contents of the performance measurements for RMF. The
count fields are double-word length.

Table 39. RMF Measurements Record Format

Offset (Dec)
Number of
Bytes Field Name Description

0 4 DACC_ID The DACC ID.

4 4 DACC_VER The version.

8 4 DACC_LEN The control block length.

12 4 DACC_ENT_CNT Number of entries.

16 4 DACC_ENT_LEN Length of each entry.

20 8 DACC_ENT_ID Identifier of count array - character ’ENCSDES’. The
Encipher service will collect data as follows:

v Collection for single DES is done separately. The
number of service calls, number of bytes of data
enciphered, and the number of hardware instructions
used to encipher the data will be collected.

28 8 DACC_ENT_SVC_CNT Count of ENCSDES service calls.

36 8 DACC_ENT_BYT_CNT Count of ENCSDES bytes processed.

44 8 DACC_ENT_INT_CNT Count of ENCSDES instructions.

52 8 DACC_ENT_ID Identifier of count array - character ’ENCTDES’. The
Encipher service will collect data as follows:

v Double and triple DES will be counted together. The
number of service calls, number of bytes of data
enciphered, and the number of hardware instructions
used to encipher the data will be collected.

60 8 DACC_ENT_SVC_CNT Count of ENCTDES service calls.

68 8 DACC_ENT_BYT_CNT Count of ENCTDES bytes processed.

76 8 DACC_ENT_INT_CNT Count of ENCTDES instructions.

168 z/OS V1R3.0 ICSF System Programmer’s Guide

|
|
|

||

|
|
|||

||||

||||

||||

||||

||||

||||
|

|
|
|
|

||||

||||

||||

||||
|

|
|
|
|

||||

||||

||||

Table 39. RMF Measurements Record Format (continued)

Offset (Dec)
Number of
Bytes Field Name Description

84 8 DACC_ENT_ID Identifier of count array - character ’DECSDES’. The
Decipher service will collect data as follows:

v Collection for single DES is done separately. The
number of service calls, number of bytes of data
deciphered, and the number of hardware instructions
used to decipher the data will be collected.

92 8 DACC_ENT_SVC_CNT Count of DECSDES service calls.

100 8 DACC_ENT_BYT_CNT Count of DECSDES bytes processed.

108 8 DACC_ENT_INT_CNT Count of DECSDES instructions.

116 8 DACC_ENT_ID Identifier of count array - character ’DECTDES’. The
Decipher service will collect data as follows:

v Double and triple DES will be counted together. The
number of service calls, number of bytes of data
deciphered, and the number of hardware instructions
used to decipher the data will be collected.

124 8 DACC_ENT_SVC_CNT Count of DECTDES service calls.

132 8 DACC_ENT_BYT_CNT Count of DECTDES bytes processed.

140 8 DACC_ENT_INT_CNT Count of DECTDES instructions.

148 8 DACC_ENT_ID Identifier of count array - character ’MACGEN’. The MAC
Generate service will collect data as follows:

v Single and various double key MAC will be gathered
together. The number of service calls, number of bytes of
data MAC’d, and the number of instructions will be
collected.

156 8 DACC_ENT_SVC_CNT Count of MACGEN service calls.

164 8 DACC_ENT_BYT_CNT Count of MACGEN bytes processed.

172 8 DACC_ENT_INT_CNT Count of MACGEN instructions.

180 8 DACC_ENT_ID Identifier of count array - character ’MACVER’. The MAC
Verify service will collect data as follows:

v Single and various double key MAC will be gathered
together. The number of service calls, number of bytes of
data MAC’d, and the number of instructions will be
collected.

188 8 DACC_ENT_SVC_CNT Count of MACVER service calls.

196 8 DACC_ENT_BYT_CNT Count of MACVER bytes processed.

204 8 DACC_ENT_INT_CNT Count of MACVER instructions.

212 8 DACC_ENT_ID Identifier of count array - character ’OWH’. The One Way
Hash service will collect data as follows:

v For SHA-1, the number of service calls, number of bytes
of bytes of data hashed, and the number of instructions
will be collected.

220 8 DACC_ENT_SVC_CNT Count of OWH service calls.

228 8 DACC_ENT_BYT_CNT Count of OWH bytes processed.

236 8 DACC_ENT_INT_CNT Count of OWH instructions.

Appendix A. Diagnosis Reference Information 169

|

|
|
|||

||||
|

|
|
|
|

||||

||||

||||

||||
|

|
|
|
|

||||

||||

||||

||||
|

|
|
|
|

||||

||||

||||

||||
|

|
|
|
|

||||

||||

||||

||||
|

|
|
|

||||

||||

||||

Table 39. RMF Measurements Record Format (continued)

Offset (Dec)
Number of
Bytes Field Name Description

244 8 DACC_ENT_ID Identifier of count array - character ’PTR’. The PIN
Translate service will collect data as follows:

v Collect the number of service calls only.

252 8 DACC_ENT_SVC_CNT Count of PTR service calls.

260 16 Reserved.

276 8 DACC_ENT_ID Identifier of count array - character ’PVR’. The PIN Verify
service will collect data as follows:

v Collect the number of service calls only.

284 8 DACC_ENT_SVC_CNT Count of PVR service calls.

292 16 Reserved.

170 z/OS V1R3.0 ICSF System Programmer’s Guide

|

|
|
|||

||||
|

|

||||

||||

||||
|

|

||||

||||

Appendix B. Installing the CICS-ICSF Attachment Facility

The purpose of the CICS-ICSF Attachment Facility is to enhance the performance
of CICS transactions in the same region as a transaction using long-running ICSF
services such as the PKA services and CKDS or PKDS update services. Without
the CICS-ICSF Attachment Facility, the application that requests a long-running
ICSF service is placed into an OS WAIT. This affects any other transactions that run
in the same region. The CICS-ICSF Attachment Facility consists, in part, of a CICS
Task-Related User Exit (TRUE). The TRUE attaches a task control block (TCB)
which does the actual call to the ICSF service. This allows the CICS application that
requests the long-running service to be placed into a CICS WAIT, rather than an OS
WAIT, for the duration of the operation.

Before you can use the CICS-ICSF Attachment Facility, the ICSF system
programmer, or the CICS administrator needs to install it. This involves the following
steps:

v Relinking the ICSF enabling routine, CSFATREN, and the ICSF TRUE,
CSFATRUE, if ICSF was previously installed in an environment without the
CICS-ICSF Attachment Facility

v Installing the proper load libraries in the PROC used to start CICS

v Updating the CICS System Definitions (CSD) data set to define the programs to
CICS

v Enabling these programs

For information about CICS TRUE programs, refer to CICS Customization Guide,
SC33-1683.

1. If ICSF was previously installed in an environment without the CICS-ICSF
Attachment Facility (i.e., without being linked with the CICS SDFHLOAD data
set), the ICSF system programmer will need to relink the ICSF TRUE,
CSFATRUE, and the ICSF enabling routine, CSFATREN. This would be the
case if, for example, (a) the DDDEF entries for ICSF do not have the
SDFHLOAD DDDEF pointing to the CICS SDFHLOAD data set but instead
have it pointing to an empty data set, or (b) z/OS (and hence ICSF) was
installed using a ServerPac.

To relink the ICSF modules, first manually update the ICSF DDDEF for
SDFHLOAD to point to the CICS SDFHLOAD data set. (Refer to ICSF sample
CSFDDDEF shipped in SAMPLIB.) Then submit a job to relink the ICSF
modules. The following is an example of job control language for the relink.
//STEP01 EXEC PGM=IEWL,
// PARM=’LIST,XREF,LET,DCBS,AMODE(31),RMODE(24)’
//SYSLMOD DD DISP=SHR,DSN=yyy.SCSFMOD0 (the ICSF load library)
//SYSLIB DD DISP=SHR,DSN=xxxxxx.SDFHLOAD
//SDFHLOAD DD DISP=SHR,DSN=xxxxxx.SDFHLOAD
//SCSFMOD0 DD DISP=SHR,DSN=yyy.SCSFMOD0 (the ICSF load library)
//SYSUT1 DD UNIT=SYSDA,SPACE=(CYL,(10,10))
//SYSPRINT DD SYSOUT=*
//SYSLIN DD *

INCLUDE SDFHLOAD(DFHEAI)
REPLACE CSFDHEAI(DFHEAI),CSF0EAI
INCLUDE SCSFMOD0(CSFATREN)

ENTRY DFHEAI
NAME CSFATREN(R)

INCLUDE SDFHLOAD(DFHEAI)
REPLACE CSFDHEAI(DFHEAI),CSF0EAI

© Copyright IBM Corp. 1997, 2002 171

|
|
|

|
|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

INCLUDE SCSFMOD0(CSFATRUE)
ENTRY DFHEAI

NAME CSFATRUE(R)
/*

2. Include the ICSF load module data set in the CICS startup job control language
as shown in the following example.
//DFHRPL DD DISP=SHR,DSN=xxxxx.SDFHLOAD
// DD DISP=SHR,DSN=yyy.SCSFMOD0 (The ICSF load library)
// DD ...
...
//SYSIN DD DISP=SHR,DSN=xxxxx.SYSIN(DFH$SIPx)
...

In the above sample code, DFH$SIPx includes the entry:
PLTPI=yy,

3. Customize the Program Load Table (PLT), to include the ICSF enabling routine
CSFATREN in second stage initialization.

The following is an example input deck for compiling a PLT for automatic
enablement of the CICS-ICSF link. This is ASM code. Assemble it with the CICS
macro library, but without the CICS translator.
//SYSIN DD *
*
* List of programs to be executed sequentially during system
* initialization. Required system initialization parm: PLTPI=yy
* DFHPLTCS should be defined in the CSD by CEDA or DFHCSDUP job
*
DFHPLT TYPE=INITIAL,SUFFIX=yy
*
* -------- Second stage of initialization -----------------
*
DFHPLT TYPE=ENTRY,PROGRAM=CSFATREN (Run enable of CSFATRUE)
*
* ---------- Delimiter between Stages 2 and 3 ------------
*
DFHPLT TYPE=ENTRY,PROGRAM=DFHDELIM
*
* --------- Third stage of initialization -----------------
* (none)
*
DFHPLT TYPE=FINAL
END
/*

The above code is an example only. Your CICS administrator can use it as a
guide in customizing the PLT. For more information about coding the PLT, refer
to CICS Resource Definition Guide.

4. Link edit the PLT with the following controls:
INCLUDE OBJLIB(DFHPLTyy)
NAME DFHPLTyy(R)

5. The CICS administrator should customize the system CSD to include the
following:

v CSFATRUE

v CSFATREN

v A PLT to indicate that initialization is to call CSFATREN to enable the ICSF
TRUE, CSFATRUE

172 z/OS V1R3.0 ICSF System Programmer’s Guide

|
|
|
|

The following is an example of the job control language and input. In this
example, xxxxx represents the local CICS prefix, and zzzzzzzz represents the
PLT entry that was compiled above.
//UPDATE JOB ...
//*- -
//DEFINES EXEC PGM=DFHCSDUP,REGION=2M
//STEPLIB DD DISP=SHR,DSN=xxxxxx.SDFHLOAD
// DD DISP=SHR,DSN=zzzzzzzz
//DFHCSD DD DISP=SHR,DSN=xxxxxx.DFHCSD
//SYSPRINT DD SYSOUT=A
//SYSIN DD *
*
DEFINE PROGRAM(CSFATREN) GROUP(ICSF)

DESCRIPTION(TRUE enablement routine)
LANGUAGE(ASSEMBLER)

*
DEFINE PROGRAM(CSFATRUE) GROUP(ICSF)

DESCRIPTION(ICSF interface TRUE)
LANGUAGE(ASSEMBLER)

*
DEFINE PROGRAM(DFHPLTyy) GROUP(ICSF)

DESCRIPTION(PLT Program Init for CSFATRUE)
LANGUAGE(ASSEMBLER)

The PLT in the example runs the program CSFATREN during CICS initialization.
CSFATREN automatically enables the ICSF TRUE, CSFATRUE. If CICS is
already started, use a CICS Command Level Interpreter Transaction (CECI) to
enable CSFATRUE. To do this, go into CECI and issue the following statement:
ENABLE PROGRAM(’CSFATRUE’) TALENGTH(64) LINKEDITMODE START

You can also do this in a single step with the following statement:
CECI ENABLE PROGRAM(’CSFATRUE’) TALENGTH(64) LINKEDITMODE START

6. Relink any existing CICS transactions that call any of the following ICSF
services. (Sample JCL for linking the ICSF callable services into an application
program can be found in ″Linking a Program with the ICSF Callable Services″ in
the z/OS ICSF Application Programmer’s Guide, SA22-7522.)
v CSFPCI — PCI Interface
v CSNBCPA — Clear PIN Generate Alternate
v CSNBCPE — Clear PIN Encrypt
v CSNBCSG — VISA CVV Service Generate
v CSNBCSV — VISA CVV Service Verify
v CSNBCVE — Cryptographic Variable Encipher
v CSNBCVT — Control Vector Translate
v CSNBDKG — Diversified Key Generate
v CSNBDKM — Data Key Import
v CSNBDKX — Data Key Export
v CSNBEPG — Encrypted PIN Generate
v CSNBKEX — Key Export
v CSNBKGN — Key Generate
v CSNBKIM — Key Import
v CSNBKPI — Key Part Import
v CSNBKRC — CKDS Key Record Create
v CSNBKRD — CKDS Key Record Delete
v CSNBKRW — CKDS Key Record Write
v CSNBKTR — Key Translate
v CSNBKYT — Key Test
v CSNBPEX — Prohibit Export
v CSNBPGN — Clear PIN Generate

Appendix B. Installing the CICS-ICSF Attachment Facility 173

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

v CSNBPTR — Encrypted PIN Translate
v CSNBPVR — Encrypted PIN Verify
v CSNBSKI — Secure Key Import
v CSNBSKM — Multiple Secure Key Import
v CSNBSKY — Secure Messaging for Keys
v CSNBSPN — Secure Messaging for PINs
v CSNDDSG — Digital Signature Generate
v CSNDDSV — Digital Signature Verify
v CSNDKRC — PKDS Record Create
v CSNDKRD — PKDS Record Delete
v CSNDKRR — PKDS Record Read
v CSNDKRW — PKDS Record Write
v CSNDKTC — PKA Key Token Change
v CSNDPKB — PKA Key Token Build
v CSNDPKD — PKA Decrypt
v CSNDPKE — PKA Encrypt
v CSNDPKG — PKA Key Generate
v CSNDPKI — PKA Key Import
v CSNDPKX — PKA Public Key Extract
v CSNDRKD — Retained Key Delete
v CSNDRKL — Retained Key List
v CSNDSBC — SET Block Compose
v CSNDSBD — SET Block Decompose
v CSNDSYG — Symmetric Key Generate
v CSNDSYI — Symmetric Key Import
v CSNDSYX — Symmetric Key Export

Beginning in OS/390 V2 R10 ICSF, the CICS Wait List can be implemented by
means of a customer modifiable data set, pointed to by the Installation Options
Data Set (WAITLIST parameter). The default WAITLIST includes all services noted
above. If the new option is not specified, the default CICS Wait List will be utilized
by ICSF when a CICS application invokes an ICSF callable service. If WAITLIST is
specified, the data set specified by this parameter will be used to determine the
names of the services to be placed on the CICS Wait List. A sample data set is
provided by ICSF via member CSFWTL00 of SYS1.SAMPLIB. The sample data set
contains the same entries as the default ICSF CICS Wait List -- for example, the
data set contains the names of all ICSF callable services which, by default, will be
driven through the CICS TRUE. The following is a sample installation data set that
contains the WAITLIST parameter.
CKDSN(CSF.SCSFCKDS)
PKDSN(CSF.SCSFPKDS)
PKDSCACHE(64)
COMPAT(NO)
SSM(YES)
KEYAUTH(NO)
CHECKAUTH(NO)
WAITLIST(HARVILL.CSFWTL00.SAM)
TRACEENTRY(599)
COMPENC(DES)

The WAITLIST option should be added to the Installation Options data set under
the following conditions.

v Non-CICS customers will not specify a WAITLIST keyword.

v CICS customers who want to use the default CICS Wait List shipped with
OS/390 V2 R10 ICSF will not specify a WAITLIST keyword. You must ensure,
however, that any existing CICS applications which invoke any of the ICSF
services in the Wait List are re-linked to pick up the new version of the stub.

174 z/OS V1R3.0 ICSF System Programmer’s Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

v CICS customers who do not want to make use of CICS TRUE must either not
enable the TRUE or specify a WAITLIST keyword and point to an empty wait list
data set or you can specify WAITLIST(DUMMY) in the Installation Options data
set.

v CICS customers who wish to modify the ICSF default CICS Wait List should
modify the sample Wait List data set supplied in member CSFWTL00 of
SYS1.SAMPLIB. The WAITLIST keyword in the Installation Options Data Set
should be set to point to this data set. Any existing CICS applications which
invoke any of the ICSF services in the Wait List should be re-linked to pick up
the new version of the stub.

If you already have the CICS-ICSF Attachment facility installed, there are a number
of callable services in OS/390 V2 R10 ICSF and higher which may potentially be
routed to the PCI Cryptographic Coprocessor for processing. The services which
may be routed to the PCI Cryptographic Coprocessor must be added to the CICS
Wait List and relinked. You can use the default CICS Wait List that is shipped with
ICSF which includes all services which have an asynchronous interface to ICSF or
you can use a sample Wait List data set that is also shipped with ICSF. The sample
CICS Wait List data set is contained in member CSFWTL00 of SYS1.SAMPLIB.
The sample data set contains the same entries as the default ICSF CICS Wait List.
You can modify the sample data set to add and/or delete items from the Wait List.
Here are some examples of why you might want to modify the sample data set:

v If you do not have a PCI Cryptographic Coprocessor installed, you can delete all
of the services identified with an ″*″ that are in the sample wait list.

v If you have a PCI Cryptographic Coprocessor installed, you can examine the
services your applications invoke in a CICS environment and determine, based
upon the routing information provided for each service in z/OS ICSF Application
Programmer’s Guide, SA22-7522, that the service will never be routed to a PCI
Cryptographic Coprocessor. In this case (except for the CKDS/PKDS access
services) the service can be deleted from the list.

v If you have an application which invokes a UDX while running under CICS, then
the name of the UDX generic service should be added to the CICS Wait List.

If you use a CICS Wait List data set, you need to identify the data set to ICSF
through the WAITLIST(data_set_name) option in the ICSF Installation Options data
set. The data set can be a member of a PARMLIB, a member of a partitioned data
set, or a sequential data set. The data set should be allocated on a permanently
resident volume and should adhere to the following:

v The format of each record in the data set must be fixed length or fixed block
length.

v A physical line in the data set must be a LRECL of 80 characters long. The
system ignores any characters in positions 73 to 80 of the line.

v You can delimit comments by ″/*″ and ″*/″ and include them anywhere in the text.
A comment cannot span physical records.

v Only one service may be specified on a logical line.

Note: You can use the WAITLIST(DUMMY) parameter to specify a null CICS Wait
List data set, or you can disable the CICS TRUE if you do not want to utilize
the CICS TRUE. See “Changing Parameters in the Installation Options Data
Set” on page 20 for additional information.

Appendix B. Installing the CICS-ICSF Attachment Facility 175

176 z/OS V1R3.0 ICSF System Programmer’s Guide

Appendix C. Helpful Hints for ICSF First Time Startup

The purpose of this section is to provide some helpful hints and resolutions for the
problems that you may encounter when starting ICSF for the first time.

Checklist for First-Time Startup of ICSF
The following is a checklist for the first-time startup of ICSF.

Step 1. Hardware Setup
Process Crypto Enablement Diskette Load

PCICC FCV Load (if applicable)

Power-on Reset

Responsible CE or Client Operator Representative

Where Support Element

Verify Via Cryptographic Coprocessor Configuration Task

v Status for CP0 and/or CP1 is ″Initialized″

Via PCI Cryptographic Coprocessor Configuration Task

v Status for Pxx is ″Configured″

References Support Element Operations Guide

Completed

Step 2. LPAR Activation Profiles
Process Crypto Page Setup

PCICC Page Setup

Processor Page Setup

Responsible CE or Client Operator Representative

Where Support Element

Verify On Crypto Page of the Activation Profile

v Enable Public Key Algorithm

v Enable Cryptographic Functions

v Enable PKSC and ICSF

v Enable Cryptographic Facility (ICRF) Key Entry

v Enable Special Secure Mode

If using TKE, also

v Enable Modify Authority (Only (1) LPAR - TKE Host)

v Enable Query Signature Controls (TKE Host)

v Enable Query Transport Controls (TKE Host)

v For the TKE Host, the Control Domain must include ALL the
domains that will be controlled by the TKE Host

On the PCICC Page of the Activation Profile

© Copyright IBM Corp. 1997, 2002 177

v PCI Cryptographics Coprocessor Candidate List includes all
PCICC’s that CAN be online

v PCI Cryptographics Coprocessor Online List includes all PCICC’s
that WILL be online when activation is complete (Selections in
the Online List MUST be selected in the Candidate List)

On the Processor Page Setup

v Cryptographic Coprocessor(s) are enabled for that LPAR

References Support Element Operations Guide

z/OS ICSF TKE Workstation User’s Guide 2000, SA22-7524 (LPAR
Considerations)

S/390 PR/SM Planning Guide

Completed

Step 3. ICSF Setup
Process Install and Customize ICSF

Responsible System Programmer and ICSF Administrator

Where TSO and ISPF Panels

Verify Customize SYS1.PARMLIB

v Add CSF.SCSFMOD0 to the LNKLST concatenation

v Update PROGxx to APF authorize CSF.SCSFMOD0

v Update IKJTSOxx for ICSF by adding CSFDAUTH to the
AUTHPGM and AUTHTSF parameter lists

CKDS and PKDS created

ICSF Startup Procedure created

Installation Options Dataset created

v Beginning in z/OS V1 R2, the DOMAIN parameter in the
installation options data set is optional. It is required if more than
one domain is specified as the usage domain on the PR/SM
panels or if running in native mode.

v CKDS and PKDS names specified

v COMPAT(NO) and SSM(YES)

Access provided to the ICSF panels

References Chapter 2, “Installation, Initialization, and Customization” on page 7

Completed

Step 4. TKE Setup
If you are not using TKE, proceed to the next step.

Process Initialize the TKE Workstation

Configure TCP/IP on the Host and the TKE Workstation

Setup the TKE Host Transaction Program

v Create JCL to start the TKE Host Transaction Program

178 z/OS V1R3.0 ICSF System Programmer’s Guide

v RACF Security Setup

v Start the TKE Host Transaction Program

Responsible Network Programmer, System Programmer and TKE Administrator

Where ISPF Panels, TKE Workstation

Verify CSFTTKE is authorized in the AUTHCMD list of IKJTSOxx in
SYS1.PARMLIB

TKE Host Transaction Program (CSFTTCP) is defined in the RACF
STARTED class (If your installation has a Generic Userid
associated to all started procedures, this is not necessary)

CSFTTKE profile is defined in the RACF FACILITY and RACF
APPL classes

References z/OS ICSF TKE Workstation User’s Guide 2000, SA22-7524 (See
Topics: TKE Workstation Setup and Customization and TKE TCP/IP
and Host Considerations)

Completed

Step 5. ICSF Startup
Process Start ICSF

Responsible Client Operator Representative or System Programmer

Where Operator Console

References Chapter 2, “Installation, Initialization, and Customization” on page 7

Completed

Step 6. Loading Master Keys and Initializing the CKDS through ICSF
Panels

If you are using TKE, proceed to the next step.

Process Passphrase Initialization to load and SET master keys and initialize
CKDS

v Create NOCV, ANSI, and ESYS keys as applicable for your
installation

- or -

Clear Master Key Entry

v Load DES New Master Key

v Load PKA Signature Master Key (SMK)

v Load PKA Key Management Master Key (KMMK)

v Load New Symmetric Master Key (if applicable)

v Load New Asymmetric Master Key (if applicable)

Note: Using the Coprocessor Management panel, the master
keys can be loaded into all the coprocessors
(Cryptographic Coprocessor Feature and PCI
Cryptographic Coprocessor) at the same time. It is
recommended that the SMK and KMMK keys be set to
the same value.

Appendix C. Helpful Hints for ICSF First Time Startup 179

|
|
|
|
|
|

v Initialize CKDS and SET the DES New Master Key

v Create NOCV, ANSI, and ESYS keys as applicable for your
installation

v Enable PKA Services

v Enable PKDS Read Access

v Enable PKDS Write, Create, and Delete Access

Responsible ICSF Administrator and Key Officers

Where ICSF Panels

Verify In System Log:

v IEE504I CRYPTO(0),ONLINE

v IEE504I CRYPTO(1),ONLINE (if applicable)

v CSFM116I BOTH MASTER KEYS CORRECT ON PCI
CRYPTOGRAPHIC COPROCESSOR Pnn, SERIAL NUMBER
nn-nnnn (if applicable)

v CSFM400I CRYPTOGRAPHY SERVICES ARE NOW
AVAILABLE

References z/OS ICSF Administrator’s Guide, SA22-7521 (See Topics: Using
the Pass Phrase Initialization Utility, Managing Master Keys on the
S/390 Enterprise Servers, and Managing Master Keys on the S/390
Enterprise Server)

Completed

Step 7. Customizing TKE and Loading Master Keys
If you are not using TKE, proceed to the next step.

Process TKE Administrator’s and Key Officers

v Define Host IDÆs

v Define CCF Authorities

v Define Access Controls (Signature Requirements for CCF)

v Define Roles (if applicable)

v Define PCI Cryptographic Coprocessor Authorities (if applicable)

v Load DES New Master Key

v Load PKA Signature Master Key (SMK)

v Load PKA Key Management Master Key (KMMK)

v Load New Symmetric Master Key (if applicable)

v Load and SET New Asymmetric Master Key (if applicable)

Note: If you have more than one crypto module or PCI
Cryptographic Coprocessor, repeat the process for each,
unless Groups have been defined. It is recommended that
the SMK and KMMK keys be set to the same value.

Responsible ICSF Administrator

v Initialize CKDS and SET the DES New Master Key

v Create NOCV, ANSI, and ESYS keys as applicable for your
installation

v Enable PKA Services

v Enable PKDS Read Access

180 z/OS V1R3.0 ICSF System Programmer’s Guide

v Enable PKDS Write, Create, and Delete Access

Where TKE Workstation and ICSF Panels

Verify In System Log:

v IEE504I CRYPTO(0),ONLINE

v IEE504I CRYPTO(1),ONLINE (if applicable)

v CSFM116I BOTH MASTER KEYS CORRECT ON PCI
CRYPTOGRAPHIC COPROCESSOR Pnn, SERIAL NUMBER
nn-nnnn (if applicable)

v CSFM400I CRYPTOGRAPHY SERVICES ARE NOW
AVAILABLE

References

z/OS ICSF Administrator’s Guide, SA22-7521 (See Topics:
Managing Master Keys on the S/390 Enterprise Servers)

Completed

Step 8. CICS-ICSF Attachment Facility Setup
If you are not using CICS-ICSF, proceed to the next section.

Process Follow the instructions in Appendix B, “Installing the CICS-ICSF
Attachment Facility” on page 171.

Responsible System Programmer

Where SMP/E Panels and Sample Jobs

References Appendix B, “Installing the CICS-ICSF Attachment Facility” on
page 171

Completed

Normal ICSF Messages at First Time Startup
It is normal to see the following error and informational messages during first time
startup of ICSF.
CSFM100E CRYPTOGRAPHIC KEY DATA SET, ECHAN.DOMAIN7.CKDS IS NOT
INITIALIZED.
CSFM511E CRYPTOGRAPHY - MASTER KEY ON COPROCESSOR 0, CPU 0 IS NOT VALID.
CSFM511E CRYPTOGRAPHY - MASTER KEY ON COPROCESSOR 1, CPU 4 IS NOT VALID.
CSFM106A CRYPTOGRAPHY - PKA MASTER KEYS ARE NOT VALID.
CSFM411I PCI CRYPTOGRAPHIC ACCELERATOR Axx IS ACTIVE.
CSFM001I ICSF INITIALIZATION COMPLETE

Commonly Encountered ICSF First Time Setup/initialization Messages
The following ICSF messages are commonly encountered during initialization and
first time startup of ICSF.

v CSFM105E CRYPTOGRAPHY - DOMAIN ’domain’ IS NOT ACCESSIBLE - A
domain mismatch exists between the domain you have selected in your LPAR
activation profile and the domain option specified in your ICSF options data set.
You must decide which domain is the one you want and correct it in the
appropriate location.

v CSFM107E CRYPTOGRAPHY - CRYPTO MODULES CONFIGURED
DIFFERENTLY - The CCC values on both of your crypto coprocessors must be
the same. One of the cryptos may not have been loaded with an enablement

Appendix C. Helpful Hints for ICSF First Time Startup 181

|
|
|
|
|
|
|

diskette yet, or selected for next activation with the force zeroize option. Ensure
that both crypto coprocessors are loaded with the same configuration. An IPL will
be required.

v CSFM120E PUBLIC KEY SECURE CABLE (PKSC) FACILITY IS NOT
ENABLED - The Enable cryptographic functions option and/or the Enable public
key secure cable (PKSC) and integrated cryptographic service facility (ICSF)
option is not enabled in the LPAR activation profile. Check the appropriate boxes
to enable the options.

v CSFM410E ERROR IN OPTIONS DATA SET - ICSF could not interpret the
options data set.

Before trying to start ICSF, ensure that the crypto coprocessors have been
initialized with the enablement diskette. If the coprocessors have been loaded, a
configuration should be available to select for next activation from the Cryptographic
Coprocessors Configuration panels. If the crypto coprocessors have not been
loaded with the enablement diskette and ICSF is started, message CSFM107E will
be issued. This message will only be issued if you have 2 Cryptographic
Coprocessor Features and they do not contain the same CCC. If the CCCs have
not been initialized (are all zeroes) you will receive an X'18F' reason code 4a
abend.

Starting with OS/390 V2 R9 ICSF, a pre-allocated PKDS is required. The PKDS
data set name must be specified in the options data set with the PKDSN option. If a
PKDS is not specified, you will receive the following messages:
CSFM408A NO PKDS NAME WAS SPECIFIED IN THE OPTIONS DATA SET.
CSFM401I CRYPTOGRAPHY - SERVICES NO LONGER AVAILABLE.

182 z/OS V1R3.0 ICSF System Programmer’s Guide

Appendix D. Accessibility

Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use software products successfully. The major
accessibility features in z/OS enable users to:

v Use assistive technologies such as screen-readers and screen magnifier
software

v Operate specific or equivalent features using only the keyboard

v Customize display attributes such as color, contrast, and font size

Using assistive technologies
Assistive technology products, such as screen-readers, function with the user
interfaces found in z/OS. Consult the assistive technology documentation for
specific information when using it to access z/OS interfaces.

Keyboard navigation of the user interface
Users can access z/OS user interfaces using TSO/E or ISPF. Refer to z/OS TSO/E
Primer, z/OS TSO/E User’s Guide, and z/OS ISPF User’s Guide Volume I for
information about accessing TSO/E and ISPF interfaces. These guides describe
how to use TSO/E and ISPF, including the use of keyboard shortcuts or function
keys (PF keys). Each guide includes the default settings for the PF keys and
explains how to modify their functions.

© Copyright IBM Corp. 1997, 2002 183

184 z/OS V1R3.0 ICSF System Programmer’s Guide

Notices

This information was developed for products and services offered in the USA.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may be
used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
USA

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply to
you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements and/or
changes in the product(s) and/or the program(s) described in this publication at any
time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for this
IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation to you.

© Copyright IBM Corp. 1997, 2002 185

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs
and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact:

IBM Corporation
Mail Station P300
2455 South Road
Poughkeepsie, NY 12601-5400
USA

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

If you are viewing this information softcopy, the photographs and color illustrations
may not appear.

Programming Interface Information
This book primarily documents information that is NOT intended to be used as a
Programming Interface of ICSF.

This book also documents intended Programming Interfaces that allow the customer
to write programs to obtain the services of ICSF. This information is identified where
it occurs, either by an introductory statement to a chapter or section or by the
following marking:

Programming Interface information

End of Programming Interface information

Trademarks
The following terms are trademarks of the IBM Corporation in the United States or
other countries or both:

AIX
AT
CICS
CT
DFSMS/MVS
ES/3090
ES/9000
IBM
IBMLink
Multiprise
MVS
MVS/DFP
MVS/ESA
OS/390
Parallel Sysplex
Personal Security

186 z/OS V1R3.0 ICSF System Programmer’s Guide

Processor Resource/Systems Manager
PR/SM
RACF
Resource Link
RMF
S/390
S/390 Parallel Enterprise Server
System/370
System/390
VTAM
zSeries
z/OS
3090

The e-business logo is a trademark of IBM.

The following terms are trademarks or registered trademarks of other companies:

MasterCard MasterCard International, Incorporated

SET SET Secure Electronic Transaction, LLC

UNIX The Open Group

VISA VISA International Service Association

Other company, product, and service names may be trademarks or service marks
of others.

Notices 187

188 z/OS V1R3.0 ICSF System Programmer’s Guide

Index

Numerics
4753

key tokens 63
4753-HSP

compatibility and coexistence with ICSF 67

A
abends 137
Access Method Services Cryptographic Option

and ICSF 126
accessibility 183
activity report

defining on a DD statement 44, 62
description 45
Version 1 Release 1 to OS/390 ICSF

description 62
addressing mode

no restrictions on ICSF’s caller 126
AMS DEFINE CLUSTER command 9, 11
AMS IMPORT/EXPORT commands 9, 11
AMS REPRO command 9, 11
AMS REPRO encryption 32

C
callable service installation exit

environment 88
exit parameter block 92
input 91
installing 88
parameters 96
purpose and use 88
return codes 96

CANCEL command 122
canceling ICSF 122
CDMF 2
changing parameters in installation options data set

specifying option keywords and values 20
changing the master key in compatibility or coexistence

mode 33
CHECKAUTH installation option 20
choosing compatibility modes during migration 34
CIPHER macro

SVC description 136
CKDS

converting from ICSF/MVS Version 1 Release 1 to
z/OS ICSF format 61

CKDS (cryptographic key data set) 2
conversion from CUSP/PCF CKDS to ICSF

CKDS 35
creating 9
description 2
header record format 139
record format 140

CKDS entry retrieval installation exit
environment 97

CKDS entry retrieval installation exit (continued)
input 98
installing 97
purpose and use 97
return codes 99

CKDS refresh
SMF record type 82 130

CKDSN installation option 21
clear master key part entry

SMF record type 82 131
coexistence mode

changing the master key 33
description 31, 32

coexistence with 4753-HSP 67
coexistence, definition 49
COMPAT installation option 21, 31
compatibility mode

and the Access Method Services Cryptographic
Option 126

changing the master key 32, 33
description 31, 32

compatibility with 4753-HSP 67
COMPENC installation option 21
component trace 135
controlling access to the callable services 133
controlling access to the cryptographic keys 134
controlling access to the key generator utility

program 133
controlling the program environment 133
conversion considerations

4753-HSP to OS/390 ICSF 63
ICSF/MVS Version 1 to z/OS 58

conversion program
activity report 45
bypassing entries 39
converting key types 41
data sets 44
including information in a key entry 40
installation exit 37
JCL for submitting 44
override file 37
running 43
Version 1 Release 1 to z/OS ICSF

data sets 62
when needed 60

conversion program installation exit
CUSP/PCF 99

purpose and use 99
return codes 101

converting a CUSP/PCF CKDS 35
converting from ICSF/MVS Version 1 Release 1 to z/OS

ICSF format
defining conversion program data sets 62

converting ICSF/MVS Version 1 Release 1 CKDS to
z/OS ICSF format 61

creating the CKDS
allocating space for the CKDS 8
reading the CKDS into storage 17

© Copyright IBM Corp. 1997, 2002 189

creating the CKDS (continued)
using the AMS DEFINE CLUSTER command 9

creating the installation options data set
guidelines 12

creating the PKDS
allocating space for the PKDS 10

creating the startup procedure 14
specifying the CSFLIST data set 15
specifying the installation options data set 14

cryptographic communication vector table 157
cryptographic communication vector table

extension 162
cryptographic key data set (CKDS)

conversion from ICSF/MVS Version 1 Release 1 to
OS/390 ICSF 60

csf 15
CSFAPRPC processing routine 72
CSFCKDS exit 96
CSFCONVX exit 99
CSFESECI exit 106
CSFESECK exit 106
CSFESECS exit 106
CSFESECT exit 106
CSFEXIT1 exit 80
CSFEXIT2 exit 80
CSFEXIT3 exit 80
CSFEXIT4 exit 80
CSFEXIT5 exit 80
CSFKGUP exit 109
CSFLIST data set 15
CSFPARM data set 15
CSFPRM00 13
CSFPRM01 13
CSFSRRW exit 102
CSFVINP data set 44
CSFVNEW data set 44, 62
CSFVOVR data set 44
CSFVRPT data set 44, 62
CSFVSRC data set 44, 62
CUSP/PCF

application 32, 34
macro 31
migration to ICSF 31

CUSP/PCF conversion program installation exit
environment 99
input 100
installing 100
purpose and use 99

D
DEFINE CLUSTER command 9, 11
defining conversion program data sets 44
defining Version 1 Release 1 to OS/390 ICSF

conversion program data sets 62
disability 183
DOMAIN installation option 22
DSS private external key token 149
DSS private internal key token 156
DSS public token 145

dynamic CKDS update
SMF record type 82 130

dynamic PKDS update
SMF record type 82 131

E
EMK macro

SVC description 136
error handling for ICRF

SMF record type 82 129
event recording 127
exit

callable service installation exits 76, 87
CKDS entry retrieval installation exit 76, 96
CUSP/PCF conversion program installation exit 76,

99
description 75
entry and return specifications 77
identifier on ICSF 22
invocation on ICSF 23
key generator utility program installation exit 77,

109
mainline installation exits 75, 80
security installation exits 105
single-record, read-write installation exit 76, 102

EXIT installation option 22
exit name table 85
external key token

PKA
DSS private 149
RSA private 146

F
formatting control blocks

using IPCS 137

G
GENKEY macro

SVC description 136

I
ICSF

V1R1 cryptographic key data set (CKDS) 60
V1R2 and 4753-HSP key label considerations 66
V1R2 key label considerations 61

ICSF initialization
SMF record type 82 129

ICSF status change
SMF record type 82 129

ICSF/MVS Version 2 Release 1
migration to z/OS ICSF 57

initializing ICSF
creating the CKDS 9
creating the PKDS 11
creation of 9, 11

190 z/OS V1R3.0 ICSF System Programmer’s Guide

initializing ICSF (continued)
selecting ICSF startup options

creating the installation options data set 12
creating the startup procedure 14

starting ICSF 18
installation exits

differences between OS/390 V2 R4 ICSF and
OS/390 V2 R5 ICSF or higher 57

ICSF/MVS Version 1 Release 1 to OS/390 ICSF 61
ICSF/MVS Version 1 Release 2 to OS/390 ICSF 59

installation option keyword 20
CHECKAUTH 20
CKDSN 21
COMPAT 21, 31
COMPENC 21
DOMAIN 22
EXIT 22
KEYAUTH 25
MAXLEN 26
PKDSCACHE 26
PKDSN 26
REASONCODES 26
SERVICE 26
SSM 27
TRACEENTRY 27
UDX 28
USERPARM 28
WAITLIST 28

installation options data set 7, 12
changing option keywords and values 20
creating 12
example 13
specifying the installation options data set 14

installation steps 7
installation-defined service

defining 71
description 69
entry and exit code example 70
executing 72
writing 69

internal key token
DES 141
PKA

DSS private 156
RSA private 151, 152, 153

K
key generator utility program exit parameter block 111
key generator utility program installation exit

calling points 109
environment 110
installing 110
processing 110
purpose and use 109
return codes 119
SET statement 119

key labels
differences between ICSF/MVS Version 1 Release 2

and 4753-HSP 66
differences between releases 61

key part entry
SMF record type 82 130

key token
DES internal 141
PKA 143

DSS private external 149
DSS private internal 156
DSS public 145
RSA 1024-bit modulus-exponent private

external 147
RSA 1024-bit private internal 152, 153
RSA 2048-bit Chinese remainder theorem private

external 147
RSA 2048-bit Chinese remainder theorem private

internal 154
RSA private external 146
RSA private internal 151
RSA public 144

KEYAUTH installation option 25
keyboard 183

M
mainline installation exit

environment 81
exit parameter block 82
input 82
installing 81
parameters 83, 87
purpose and use 80

master key entry
differences between releases 60

master key part entry
SMF record type 82 130

MAXLEN installation option 26
message recording 132
migrating from CUSP/PCF 31
migrating from ICSF/MVS Version 2 Release 1 57
migrating from OS/390 V2 R4 ICSF 57
migration

terminology 49
migration considerations

4753-HSP to OS/390 ICSF 63
ICSF/MVS Version 1 to z/OS 58

MODIFY command 122
modifying ICSF 122

N
noncompatibility mode

description 31, 34
Notices 185

O
OS/390 V2 R4 ICSF

migration from 57
override file

defining on a DD statement 44

Index 191

P
panels

accessing 16
PCF (Programmed Cryptographic Facility)

cannot be cancelled and restarted 122
PCI Cryptographic Coprocessor clear master key entry

SMF record type 82 131
PCI Cryptographic Coprocessor configuration

SMF record type 82 132
PCI Cryptographic Coprocessor retained key create or

delete
SMF record type 82 131

PCI Cryptographic Coprocessor timing
SMF record type 82 132

PCI Cryptographic Coprocessor TKE command request
or reply

SMF record type 82 132
PKA key part entry

SMF record type 82 130
PKA key token 143

record format
DSS private external 149
DSS private internal 156
DSS public 145
RSA 1024-bit modulus-exponent private

external 147
RSA 1024-bit private internal 152, 153
RSA 2048-bit Chinese remainder theorem private

external 147
RSA 2048-bit Chinese remainder theorem private

internal 154
RSA private external 146
RSA private internal 151
RSA public 144

PKA master keys 2
PKDS (public key data set) 3

creating 11
description 3
header record format 143
record format 143

PKDSCACHE installation option 26
PKDSN installation option 26
PKSC commands

SMF record type 82 131
private external key token

DSS 149
RSA 146

private internal key token
DSS 156
RSA 151, 152, 153

public key data set 3
improving security and reliability for the PKDS 11

public key token
DSS 145
RSA 144

R
read-write exit parameter block 104
REASONCODES installation option 26

recording events 127
RETKEY macro

SVC description 136
return codes

from PCF and CUSP macros
migration consideration 32

RMF
header record format 168

RSA 1024-bit private internal key token 152, 153
RSA private external Chinese remainder theorem key

token 147
RSA private external key token 146
RSA private external modulus-exponent key token 147
RSA private internal Chinese remainder theorem key

token 154
RSA private internal key token 151
RSA public token 144
running ICSF

in coexistence mode 32
in compatibility mode 32
in noncompatibility mode 34

running the conversion program
converting from ICSF/MVS Version 1 Release 1 to

z/OS ICSF format
defining conversion program data sets 62

creating a job to run the conversion program 43
defining conversion program data sets 44

S
scheduling changes for cryptographic keys 134
secondary parameter block 94
security considerations 133
security installation exit

environment 106
input 108
installing 106
purpose and use 105
return codes 108

selecting ICSF startup options
creating the installation options data set 12
creating the startup procedure 14

SERVICE installation option 26
syntax 71

service stub
description 69
example 73
linking 72
writing 72

shortcut keys 183
single-record, read-write installation exit

conversion program invocation 37
input 103
installing 103
purpose and use 102
return codes 105

SMF record type 82 127
subtype 1 129
subtype 10 130
subtype 11 131
subtype 12 131

192 z/OS V1R3.0 ICSF System Programmer’s Guide

SMF record type 82 (continued)
subtype 13 131
subtype 14 131
subtype 15 131
subtype 16 132
subtype 17 132
subtype 18 132
subtype 3 129
subtype 4 129
subtype 5 130
subtype 6 130
subtype 7 130
subtype 8 130
subtype 9 130

SMF recording 119, 127
special secure mode

SMF record type 82 130
specifying the installation options data set 14
SSM installation option 27
START command 18, 122
starting ICSF

creating the startup procedure 14
entering the ICSF START command 18, 122

startup procedure 7, 14
steps in installation 7
STOP command 122
stopping ICSF 122
SVC 143 136
SYS1.PARMLIB

customizing 8
description 7

SYS1.PROCLIB
description 7
storing startup procedure 15

SYS1.SAMPLIB
CSFPRM00 13
CSFPRM01 13
description 7

T
testing ICSF 35
token validation value (TVV) 142
TRACEENTRY installation option 27

U
UDX installation option 28
UDX support 66
User Defined Extension 66
USERPARM installation option 28
using different configurations 123
using the conversion program override file 37

V
Version 1 Release 1 to z/OS ICSF conversion program

activity report 62
virtual storage constraint relief

for the caller of ICSF 126

VSAM data set
creating 9

VTAM
starting before ICSF 122

VTAM session-level encryption
and ICSF 126

W
WAITLIST installation option 28

Index 193

194 z/OS V1R3.0 ICSF System Programmer’s Guide

Readers’ Comments — We’d Like to Hear from You

z/OS
Integrated Cryptographic Service Facility
System Programmer’s Guide

Publication No. SA22-7520-03

Overall, how satisfied are you with the information in this book?

Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied
Overall satisfaction h h h h h

How satisfied are you that the information in this book is:

Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied
Accurate h h h h h

Complete h h h h h

Easy to find h h h h h

Easy to understand h h h h h

Well organized h h h h h

Applicable to your tasks h h h h h

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? h Yes h No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Readers’ Comments — We’d Like to Hear from You
SA22-7520-03

SA22-7520-03

����
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation
Department 55JA, Mail Station P384
2455 South Road
Poughkeepsie, NY
12601-5400

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

Program Number: 5694-A01

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SA22-7520-03

	Contents
	Figures
	Tables
	About This Book
	Who Should Use This Book
	How to Use This Book
	Where to Find More Information
	Using LookAt to look up message explanations
	Accessing licensed books on the Web

	Do You Have Problems, Comments, or Suggestions?

	Summary of changes
	Chapter 1. Introduction to z/OS ICSF
	The Cryptographic Key Data Set (CKDS)
	The Public Key Data Set (PKDS)
	Additional Background Information
	Running CUSP/PCF Applications on OS/390 ICSF
	Running 4753-HSP Applications on ICSF
	Using RMF and SMF to Monitor z/OS ICSF Events
	Controlling Access to ICSF

	Before Starting Installation

	Chapter 2. Installation, Initialization, and Customization
	Steps in Installation and Initialization
	Customize SYS1.PARMLIB
	Create the CKDS
	Create the PKDS
	Create the Installation Options Data Set
	Create the ICSF Startup Procedure
	Provide Access to the ICSF Panels

	Start ICSF for the First Time
	MK Initialization for SMP/E Only
	Customizing ICSF after the First Start
	Changing Parameters in the Installation Options Data Set
	Improving CKDS Performance
	Creating ICSF Exits and Generic Services

	Chapter 3. Migration from CUSP/PCF to z/OS ICSF
	Running CUSP/PCF and z/OS ICSF on the Same System
	Running in Compatibility Mode
	Running in Coexistence Mode
	Changing the Master Key in Compatibility or Coexistence Mode
	Running in Noncompatibility Mode
	Specifying Compatibility Modes during Migration

	Converting a CUSP/PCF CKDS to ICSF Format
	How the CUSP/PCF Conversion Program Runs
	Calling Installation Exits During Conversion

	Using the Conversion Program Override File
	Bypassing Conversion of Entries
	Including Information in a Key Entry
	Converting Key Types

	Running the Conversion Program

	Chapter 4. Migration from Previous Releases of ICSF
	Terminology
	Common Migration Activities for z/OS ICSF, OS/390 ICSF and ICSF/MVS Version 2 Release 1
	Access to Callable Services
	Callable Services
	CICS Attachment Facility
	CKDS
	Installation Options Data Set
	Key Tokens
	PCI Cryptographic Accelerator
	PKA Public Key Storage
	PKDS
	Resource Manager Interface (RMF)
	Special Secure Mode
	TKE Workstation

	Migrating from V2 R4 ICSF
	Installation Exits

	Migrating from ICSF/MVS Version 2 Release 1
	CKDS
	Installation Exits

	Migrating from ICSF/MVS Version 1
	Migrating from ICSF/MVS Version 1 Release 2
	Migrating from ICSF/MVS Version 1 Release 1
	Converting a Version 1 Release 1 CKDS to z/OS ICSF Format
	How the Conversion Program Works
	Converting to the New Label Format
	Running the Conversion Program

	Migrating from 4753-HSP

	Chapter 5. Compatibility and Coexistence of 4753-HSP and ICSF
	Running 4753-HSP and ICSF on the Same z/OS System

	Chapter 6. Installation-Defined Callable Services
	Writing a Callable Service
	Contents of Registers
	Checking the Parameters
	Link-Editing the Callable Service

	Defining a Callable Service
	Writing a Service Stub

	Chapter 7. Installation Exits
	Types of Exits
	Mainline Exits
	Exits for the Callable Services
	The CUSP/PCF Conversion Program Exit
	The Single-record, Read-write Exit
	The Cryptographic Key Data Set Entry Retrieval Exit
	Security Exits
	The KGUP Exit

	Entry and Return Specifications
	Registers at Entry
	Registers at Return

	Exits Environment
	Mainline Exits
	Callable Service Exits
	CKDS Entry Retrieval Exit
	KGUP, Conversion Programs, and Single-record, Read-write Exits
	Security Exits

	Exit Recovery
	Mainline Installation Exits
	Purpose and Use of the Exits
	CSFEXIT1
	CSFEXIT2
	CSFEXIT3
	CSFEXIT4
	CSFEXIT5

	Environment of the Exits
	Installing the Exits
	Input
	The Exit Parameter Block
	Parameters

	Return Codes

	Callable Services Installation Exits
	Purpose and Use of the Exits
	Environment of the Exits
	Installing the Exits
	Input
	The Exit Parameter Block
	The Secondary Parameter Block
	Parameters

	Return Codes

	Cryptographic Key Data Set Entry Retrieval Installation Exit
	Purpose and Use of the Exit
	Environment of the Exit
	Installing the Exit
	Input
	Return Codes

	CUSP/PCF Conversion Program Installation Exit
	Purpose and Use of the Exit
	Environment of the Exit
	Installing the Exit
	Input
	Return Codes

	Single-record, Read-write Installation Exit
	Purpose and Use of the Exit
	Environment of the Exit
	Installing the Exit
	Input
	Return Codes

	Exit Points for Security Installation Exits
	Security Installation Exits
	Purpose and Use of the Exits
	Security Initialization Exit
	Security Termination Exit
	Security Service Exit
	Security Key Exit

	Environment of the Exits
	Installing the Exits
	Input
	Return Codes

	Key Generator Utility Program Installation Exit
	Purpose and Use of the Exit
	KGUP Calling Points
	Processing in the Exit

	Environment of the Exit
	Installing the Exit
	Input
	The SET Statement
	Return Codes

	Chapter 8. Operating ICSF
	Starting and Stopping ICSF
	Modifying ICSF
	Using Different Configurations
	Configuring the S/390 Enterprise Servers, the S/390 Multiprise Server and the IBM Eserver zSeries
	Single Image Mode
	Logical Partition (LPAR) Mode

	Disabling the Cryptographic Coprocessor Feature
	Performance Considerations for Using Installation Options
	VTAM Session-Level Encryption
	Access Method Services Cryptographic Option

	Event Recording
	System Management Facilities (SMF) Recording
	ICSF Initialization (Subtype 1)
	ICSF Status Change (Subtype 3)
	Error Handling for Cryptographic Coprocessor Feature (Subtype 4)
	Special Secure Mode Change (Subtype 5)
	Master Key Part Entry (Subtype 6)
	Operation Key Part Entry (Subtype 7)
	CKDS Refresh (Subtype 8)
	Dynamic CKDS Update (Subtype 9)
	PKA Key Part Entry (Subtype 10)
	Clear New Master Key Part Entry (Subtype 11)
	PKSC Commands (Subtype 12)
	Dynamic PKDS Update (Subtype 13)
	PCI Cryptographic Coprocessor Clear Master Key Entry (Subtype 14)
	PCI Cryptographic Coprocessor Retained Key Create or Delete (Subtype 15)
	PCI Cryptographic Coprocessor TKE Command Request or Reply (Subtype 16)
	PCI Cryptographic Coprocessor Timing (Subtype 17)
	PCI Cryptographic Coprocessor Configuration (Subtype 18)

	Message Recording

	Security Considerations
	Controlling the Program Environment
	Controlling Access to KGUP
	Controlling Access to the Callable Services
	Controlling Access to Cryptographic Keys
	Scheduling Changes for Cryptographic Keys
	Controlling Access to Administrative Panel Functions

	Debugging Aids
	Component Trace
	Examining the Trace Entry Buffer

	ICSF System SVC 143
	Abnormal Endings
	IPCS Formatting Routine

	Appendix A. Diagnosis Reference Information
	Cryptographic Key Data Set (CKDS) Format
	Format of the CKDS Header Record
	Format of the CKDS Record
	Format of the DES Internal Key Token
	Token Validation Value

	Public Key Data Set (PKDS) Format
	Format of the PKDS Header Record
	Format of the PKDS Record
	PKA Token Formats
	Format of the RSA Public Key Token
	Format of the DSS Public Key Token
	Format of RSA Private External Key Tokens
	Format of the DSS Private External Key Token

	Internal PKA Tokens
	Format of the RSA Private Internal Key Token
	Format of the DSS Private Internal Key Token

	Data Areas
	The Cryptographic Communication Vector Table (CCVT)
	The Cryptographic Communication Vector Table Extension (CCVE)
	Master Key Verification Pattern Block (MKVB)
	Generic Service Table (CSFMGST)
	RMF Measurements Table

	Appendix B. Installing the CICS-ICSF Attachment Facility
	Appendix C. Helpful Hints for ICSF First Time Startup
	Checklist for First-Time Startup of ICSF
	Step 1. Hardware Setup
	Step 2. LPAR Activation Profiles
	Step 3. ICSF Setup
	Step 4. TKE Setup
	Step 5. ICSF Startup
	Step 6. Loading Master Keys and Initializing the CKDS through ICSF Panels
	Step 7. Customizing TKE and Loading Master Keys
	Step 8. CICS-ICSF Attachment Facility Setup

	Normal ICSF Messages at First Time Startup
	Commonly Encountered ICSF First Time Setup/initialization Messages

	Appendix D. Accessibility
	Using assistive technologies
	Keyboard navigation of the user interface

	Notices
	Programming Interface Information
	Trademarks

	Index
	Readers’ Comments — We'd Like to Hear from You

